Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Liouville's approximation theorem
aalioulem4
Next ⟩
aalioulem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
aalioulem4
Description:
Lemma for
aaliou
.
(Contributed by
Stefan O'Rear
, 16-Nov-2014)
Ref
Expression
Hypotheses
aalioulem2.a
⊢
N
=
deg
F
aalioulem2.b
⊢
φ
→
F
∈
Poly
ℤ
aalioulem2.c
⊢
φ
→
N
∈
ℕ
aalioulem2.d
⊢
φ
→
A
∈
ℝ
aalioulem3.e
⊢
φ
→
F
A
=
0
Assertion
aalioulem4
⊢
φ
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
Proof
Step
Hyp
Ref
Expression
1
aalioulem2.a
⊢
N
=
deg
F
2
aalioulem2.b
⊢
φ
→
F
∈
Poly
ℤ
3
aalioulem2.c
⊢
φ
→
N
∈
ℕ
4
aalioulem2.d
⊢
φ
→
A
∈
ℝ
5
aalioulem3.e
⊢
φ
→
F
A
=
0
6
1
2
3
4
5
aalioulem3
⊢
φ
→
∃
x
∈
ℝ
+
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
7
simp2l
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
p
∈
ℤ
8
simp2r
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
∈
ℕ
9
znq
⊢
p
∈
ℤ
∧
q
∈
ℕ
→
p
q
∈
ℚ
10
7
8
9
syl2anc
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
p
q
∈
ℚ
11
qre
⊢
p
q
∈
ℚ
→
p
q
∈
ℝ
12
10
11
syl
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
p
q
∈
ℝ
13
simp3r
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
−
p
q
≤
1
14
oveq2
⊢
a
=
p
q
→
A
−
a
=
A
−
p
q
15
14
fveq2d
⊢
a
=
p
q
→
A
−
a
=
A
−
p
q
16
15
breq1d
⊢
a
=
p
q
→
A
−
a
≤
1
↔
A
−
p
q
≤
1
17
2fveq3
⊢
a
=
p
q
→
F
a
=
F
p
q
18
17
oveq2d
⊢
a
=
p
q
→
x
F
a
=
x
F
p
q
19
18
15
breq12d
⊢
a
=
p
q
→
x
F
a
≤
A
−
a
↔
x
F
p
q
≤
A
−
p
q
20
16
19
imbi12d
⊢
a
=
p
q
→
A
−
a
≤
1
→
x
F
a
≤
A
−
a
↔
A
−
p
q
≤
1
→
x
F
p
q
≤
A
−
p
q
21
20
rspcv
⊢
p
q
∈
ℝ
→
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
→
A
−
p
q
≤
1
→
x
F
p
q
≤
A
−
p
q
22
21
com23
⊢
p
q
∈
ℝ
→
A
−
p
q
≤
1
→
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
→
x
F
p
q
≤
A
−
p
q
23
12
13
22
sylc
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
→
x
F
p
q
≤
A
−
p
q
24
simp1r
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
∈
ℝ
+
25
8
nnrpd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
∈
ℝ
+
26
simp1l
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
φ
27
26
3
syl
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
N
∈
ℕ
28
27
nnzd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
N
∈
ℤ
29
25
28
rpexpcld
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
∈
ℝ
+
30
24
29
rpdivcld
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
q
N
∈
ℝ
+
31
30
rpred
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
q
N
∈
ℝ
32
31
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
∧
x
F
p
q
≤
A
−
p
q
→
x
q
N
∈
ℝ
33
24
rpred
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
∈
ℝ
34
26
2
syl
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
F
∈
Poly
ℤ
35
plyf
⊢
F
∈
Poly
ℤ
→
F
:
ℂ
⟶
ℂ
36
34
35
syl
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
F
:
ℂ
⟶
ℂ
37
12
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
p
q
∈
ℂ
38
36
37
ffvelcdmd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
F
p
q
∈
ℂ
39
38
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
F
p
q
∈
ℝ
40
33
39
remulcld
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
F
p
q
∈
ℝ
41
40
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
∧
x
F
p
q
≤
A
−
p
q
→
x
F
p
q
∈
ℝ
42
26
4
syl
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
∈
ℝ
43
42
12
resubcld
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
−
p
q
∈
ℝ
44
43
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
−
p
q
∈
ℂ
45
44
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
−
p
q
∈
ℝ
46
45
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
∧
x
F
p
q
≤
A
−
p
q
→
A
−
p
q
∈
ℝ
47
24
rpcnd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
∈
ℂ
48
29
rpcnd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
∈
ℂ
49
29
rpne0d
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
≠
0
50
47
48
49
divrecd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
q
N
=
x
1
q
N
51
48
38
absmuld
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
F
p
q
=
q
N
F
p
q
52
29
rpred
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
∈
ℝ
53
29
rpge0d
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
0
≤
q
N
54
52
53
absidd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
=
q
N
55
54
oveq1d
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
F
p
q
=
q
N
F
p
q
56
51
55
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
F
p
q
=
q
N
F
p
q
57
48
38
mulcomd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
F
p
q
=
F
p
q
q
N
58
1
oveq2i
⊢
q
N
=
q
deg
F
59
58
oveq2i
⊢
F
p
q
q
N
=
F
p
q
q
deg
F
60
57
59
eqtrdi
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
F
p
q
=
F
p
q
q
deg
F
61
34
7
8
aalioulem1
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
F
p
q
q
deg
F
∈
ℤ
62
60
61
eqeltrd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
F
p
q
∈
ℤ
63
simp3l
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
F
p
q
≠
0
64
48
38
49
63
mulne0d
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
F
p
q
≠
0
65
nnabscl
⊢
q
N
F
p
q
∈
ℤ
∧
q
N
F
p
q
≠
0
→
q
N
F
p
q
∈
ℕ
66
62
64
65
syl2anc
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
F
p
q
∈
ℕ
67
56
66
eqeltrrd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
q
N
F
p
q
∈
ℕ
68
67
nnge1d
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
1
≤
q
N
F
p
q
69
1red
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
1
∈
ℝ
70
69
39
29
ledivmuld
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
1
q
N
≤
F
p
q
↔
1
≤
q
N
F
p
q
71
68
70
mpbird
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
1
q
N
≤
F
p
q
72
29
rprecred
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
1
q
N
∈
ℝ
73
72
39
24
lemul2d
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
1
q
N
≤
F
p
q
↔
x
1
q
N
≤
x
F
p
q
74
71
73
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
1
q
N
≤
x
F
p
q
75
50
74
eqbrtrd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
q
N
≤
x
F
p
q
76
75
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
∧
x
F
p
q
≤
A
−
p
q
→
x
q
N
≤
x
F
p
q
77
simpr
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
∧
x
F
p
q
≤
A
−
p
q
→
x
F
p
q
≤
A
−
p
q
78
32
41
46
76
77
letrd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
∧
x
F
p
q
≤
A
−
p
q
→
x
q
N
≤
A
−
p
q
79
78
olcd
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
∧
x
F
p
q
≤
A
−
p
q
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
80
79
ex
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
x
F
p
q
≤
A
−
p
q
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
81
23
80
syld
⊢
φ
∧
x
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
82
81
3exp
⊢
φ
∧
x
∈
ℝ
+
→
p
∈
ℤ
∧
q
∈
ℕ
→
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
83
82
com34
⊢
φ
∧
x
∈
ℝ
+
→
p
∈
ℤ
∧
q
∈
ℕ
→
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
→
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
84
83
com23
⊢
φ
∧
x
∈
ℝ
+
→
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
→
p
∈
ℤ
∧
q
∈
ℕ
→
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
85
84
ralrimdvv
⊢
φ
∧
x
∈
ℝ
+
→
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
→
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
86
85
reximdva
⊢
φ
→
∃
x
∈
ℝ
+
∀
a
∈
ℝ
A
−
a
≤
1
→
x
F
a
≤
A
−
a
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
87
6
86
mpd
⊢
φ
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q