Metamath Proof Explorer


Theorem aalioulem4

Description: Lemma for aaliou . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aalioulem2.a N=degF
aalioulem2.b φFPoly
aalioulem2.c φN
aalioulem2.d φA
aalioulem3.e φFA=0
Assertion aalioulem4 φx+pqFpq0Apq1A=pqxqNApq

Proof

Step Hyp Ref Expression
1 aalioulem2.a N=degF
2 aalioulem2.b φFPoly
3 aalioulem2.c φN
4 aalioulem2.d φA
5 aalioulem3.e φFA=0
6 1 2 3 4 5 aalioulem3 φx+aAa1xFaAa
7 simp2l φx+pqFpq0Apq1p
8 simp2r φx+pqFpq0Apq1q
9 znq pqpq
10 7 8 9 syl2anc φx+pqFpq0Apq1pq
11 qre pqpq
12 10 11 syl φx+pqFpq0Apq1pq
13 simp3r φx+pqFpq0Apq1Apq1
14 oveq2 a=pqAa=Apq
15 14 fveq2d a=pqAa=Apq
16 15 breq1d a=pqAa1Apq1
17 2fveq3 a=pqFa=Fpq
18 17 oveq2d a=pqxFa=xFpq
19 18 15 breq12d a=pqxFaAaxFpqApq
20 16 19 imbi12d a=pqAa1xFaAaApq1xFpqApq
21 20 rspcv pqaAa1xFaAaApq1xFpqApq
22 21 com23 pqApq1aAa1xFaAaxFpqApq
23 12 13 22 sylc φx+pqFpq0Apq1aAa1xFaAaxFpqApq
24 simp1r φx+pqFpq0Apq1x+
25 8 nnrpd φx+pqFpq0Apq1q+
26 simp1l φx+pqFpq0Apq1φ
27 26 3 syl φx+pqFpq0Apq1N
28 27 nnzd φx+pqFpq0Apq1N
29 25 28 rpexpcld φx+pqFpq0Apq1qN+
30 24 29 rpdivcld φx+pqFpq0Apq1xqN+
31 30 rpred φx+pqFpq0Apq1xqN
32 31 adantr φx+pqFpq0Apq1xFpqApqxqN
33 24 rpred φx+pqFpq0Apq1x
34 26 2 syl φx+pqFpq0Apq1FPoly
35 plyf FPolyF:
36 34 35 syl φx+pqFpq0Apq1F:
37 12 recnd φx+pqFpq0Apq1pq
38 36 37 ffvelcdmd φx+pqFpq0Apq1Fpq
39 38 abscld φx+pqFpq0Apq1Fpq
40 33 39 remulcld φx+pqFpq0Apq1xFpq
41 40 adantr φx+pqFpq0Apq1xFpqApqxFpq
42 26 4 syl φx+pqFpq0Apq1A
43 42 12 resubcld φx+pqFpq0Apq1Apq
44 43 recnd φx+pqFpq0Apq1Apq
45 44 abscld φx+pqFpq0Apq1Apq
46 45 adantr φx+pqFpq0Apq1xFpqApqApq
47 24 rpcnd φx+pqFpq0Apq1x
48 29 rpcnd φx+pqFpq0Apq1qN
49 29 rpne0d φx+pqFpq0Apq1qN0
50 47 48 49 divrecd φx+pqFpq0Apq1xqN=x1qN
51 48 38 absmuld φx+pqFpq0Apq1qNFpq=qNFpq
52 29 rpred φx+pqFpq0Apq1qN
53 29 rpge0d φx+pqFpq0Apq10qN
54 52 53 absidd φx+pqFpq0Apq1qN=qN
55 54 oveq1d φx+pqFpq0Apq1qNFpq=qNFpq
56 51 55 eqtrd φx+pqFpq0Apq1qNFpq=qNFpq
57 48 38 mulcomd φx+pqFpq0Apq1qNFpq=FpqqN
58 1 oveq2i qN=qdegF
59 58 oveq2i FpqqN=FpqqdegF
60 57 59 eqtrdi φx+pqFpq0Apq1qNFpq=FpqqdegF
61 34 7 8 aalioulem1 φx+pqFpq0Apq1FpqqdegF
62 60 61 eqeltrd φx+pqFpq0Apq1qNFpq
63 simp3l φx+pqFpq0Apq1Fpq0
64 48 38 49 63 mulne0d φx+pqFpq0Apq1qNFpq0
65 nnabscl qNFpqqNFpq0qNFpq
66 62 64 65 syl2anc φx+pqFpq0Apq1qNFpq
67 56 66 eqeltrrd φx+pqFpq0Apq1qNFpq
68 67 nnge1d φx+pqFpq0Apq11qNFpq
69 1red φx+pqFpq0Apq11
70 69 39 29 ledivmuld φx+pqFpq0Apq11qNFpq1qNFpq
71 68 70 mpbird φx+pqFpq0Apq11qNFpq
72 29 rprecred φx+pqFpq0Apq11qN
73 72 39 24 lemul2d φx+pqFpq0Apq11qNFpqx1qNxFpq
74 71 73 mpbid φx+pqFpq0Apq1x1qNxFpq
75 50 74 eqbrtrd φx+pqFpq0Apq1xqNxFpq
76 75 adantr φx+pqFpq0Apq1xFpqApqxqNxFpq
77 simpr φx+pqFpq0Apq1xFpqApqxFpqApq
78 32 41 46 76 77 letrd φx+pqFpq0Apq1xFpqApqxqNApq
79 78 olcd φx+pqFpq0Apq1xFpqApqA=pqxqNApq
80 79 ex φx+pqFpq0Apq1xFpqApqA=pqxqNApq
81 23 80 syld φx+pqFpq0Apq1aAa1xFaAaA=pqxqNApq
82 81 3exp φx+pqFpq0Apq1aAa1xFaAaA=pqxqNApq
83 82 com34 φx+pqaAa1xFaAaFpq0Apq1A=pqxqNApq
84 83 com23 φx+aAa1xFaAapqFpq0Apq1A=pqxqNApq
85 84 ralrimdvv φx+aAa1xFaAapqFpq0Apq1A=pqxqNApq
86 85 reximdva φx+aAa1xFaAax+pqFpq0Apq1A=pqxqNApq
87 6 86 mpd φx+pqFpq0Apq1A=pqxqNApq