Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atanlogaddlem
Next ⟩
atanlogadd
Metamath Proof Explorer
Ascii
Unicode
Theorem
atanlogaddlem
Description:
Lemma for
atanlogadd
.
(Contributed by
Mario Carneiro
, 3-Apr-2015)
Ref
Expression
Assertion
atanlogaddlem
⊢
A
∈
dom
arctan
∧
0
≤
ℜ
A
→
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
Proof
Step
Hyp
Ref
Expression
1
0re
⊢
0
∈
ℝ
2
atandm2
⊢
A
∈
dom
arctan
↔
A
∈
ℂ
∧
1
−
i
A
≠
0
∧
1
+
i
A
≠
0
3
2
simp1bi
⊢
A
∈
dom
arctan
→
A
∈
ℂ
4
3
recld
⊢
A
∈
dom
arctan
→
ℜ
A
∈
ℝ
5
leloe
⊢
0
∈
ℝ
∧
ℜ
A
∈
ℝ
→
0
≤
ℜ
A
↔
0
<
ℜ
A
∨
0
=
ℜ
A
6
1
4
5
sylancr
⊢
A
∈
dom
arctan
→
0
≤
ℜ
A
↔
0
<
ℜ
A
∨
0
=
ℜ
A
7
6
biimpa
⊢
A
∈
dom
arctan
∧
0
≤
ℜ
A
→
0
<
ℜ
A
∨
0
=
ℜ
A
8
ax-1cn
⊢
1
∈
ℂ
9
ax-icn
⊢
i
∈
ℂ
10
mulcl
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
∈
ℂ
11
9
3
10
sylancr
⊢
A
∈
dom
arctan
→
i
A
∈
ℂ
12
addcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
+
i
A
∈
ℂ
13
8
11
12
sylancr
⊢
A
∈
dom
arctan
→
1
+
i
A
∈
ℂ
14
2
simp3bi
⊢
A
∈
dom
arctan
→
1
+
i
A
≠
0
15
13
14
logcld
⊢
A
∈
dom
arctan
→
log
1
+
i
A
∈
ℂ
16
subcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
−
i
A
∈
ℂ
17
8
11
16
sylancr
⊢
A
∈
dom
arctan
→
1
−
i
A
∈
ℂ
18
2
simp2bi
⊢
A
∈
dom
arctan
→
1
−
i
A
≠
0
19
17
18
logcld
⊢
A
∈
dom
arctan
→
log
1
−
i
A
∈
ℂ
20
15
19
addcld
⊢
A
∈
dom
arctan
→
log
1
+
i
A
+
log
1
−
i
A
∈
ℂ
21
20
adantr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
1
+
i
A
+
log
1
−
i
A
∈
ℂ
22
pire
π
⊢
π
∈
ℝ
23
22
renegcli
π
⊢
−
π
∈
ℝ
24
23
a1i
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
∈
ℝ
25
19
adantr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
1
−
i
A
∈
ℂ
26
25
imcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
−
i
A
∈
ℝ
27
15
adantr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
1
+
i
A
∈
ℂ
28
27
imcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
∈
ℝ
29
28
26
readdcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
+
ℑ
log
1
−
i
A
∈
ℝ
30
17
adantr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
1
−
i
A
∈
ℂ
31
im1
⊢
ℑ
1
=
0
32
31
oveq1i
⊢
ℑ
1
−
ℑ
i
A
=
0
−
ℑ
i
A
33
df-neg
⊢
−
ℑ
i
A
=
0
−
ℑ
i
A
34
32
33
eqtr4i
⊢
ℑ
1
−
ℑ
i
A
=
−
ℑ
i
A
35
11
adantr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
∈
ℂ
36
imsub
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
ℑ
1
−
i
A
=
ℑ
1
−
ℑ
i
A
37
8
35
36
sylancr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
1
−
i
A
=
ℑ
1
−
ℑ
i
A
38
3
adantr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
A
∈
ℂ
39
reim
⊢
A
∈
ℂ
→
ℜ
A
=
ℑ
i
A
40
38
39
syl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
=
ℑ
i
A
41
40
negeqd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
ℜ
A
=
−
ℑ
i
A
42
34
37
41
3eqtr4a
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
1
−
i
A
=
−
ℜ
A
43
4
lt0neg2d
⊢
A
∈
dom
arctan
→
0
<
ℜ
A
↔
−
ℜ
A
<
0
44
43
biimpa
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
ℜ
A
<
0
45
42
44
eqbrtrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
1
−
i
A
<
0
46
argimlt0
π
⊢
1
−
i
A
∈
ℂ
∧
ℑ
1
−
i
A
<
0
→
ℑ
log
1
−
i
A
∈
−
π
0
47
30
45
46
syl2anc
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
−
i
A
∈
−
π
0
48
eliooord
π
π
⊢
ℑ
log
1
−
i
A
∈
−
π
0
→
−
π
<
ℑ
log
1
−
i
A
∧
ℑ
log
1
−
i
A
<
0
49
47
48
syl
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
<
ℑ
log
1
−
i
A
∧
ℑ
log
1
−
i
A
<
0
50
49
simpld
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
<
ℑ
log
1
−
i
A
51
13
adantr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
1
+
i
A
∈
ℂ
52
simpr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℜ
A
53
imadd
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
ℑ
1
+
i
A
=
ℑ
1
+
ℑ
i
A
54
8
35
53
sylancr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
1
+
i
A
=
ℑ
1
+
ℑ
i
A
55
40
oveq2d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
1
+
ℜ
A
=
ℑ
1
+
ℑ
i
A
56
31
oveq1i
⊢
ℑ
1
+
ℜ
A
=
0
+
ℜ
A
57
38
recld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
∈
ℝ
58
57
recnd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
∈
ℂ
59
58
addlidd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
+
ℜ
A
=
ℜ
A
60
56
59
eqtrid
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
1
+
ℜ
A
=
ℜ
A
61
54
55
60
3eqtr2d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
1
+
i
A
=
ℜ
A
62
52
61
breqtrrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℑ
1
+
i
A
63
argimgt0
π
⊢
1
+
i
A
∈
ℂ
∧
0
<
ℑ
1
+
i
A
→
ℑ
log
1
+
i
A
∈
0
π
64
51
62
63
syl2anc
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
∈
0
π
65
eliooord
π
π
⊢
ℑ
log
1
+
i
A
∈
0
π
→
0
<
ℑ
log
1
+
i
A
∧
ℑ
log
1
+
i
A
<
π
66
64
65
syl
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℑ
log
1
+
i
A
∧
ℑ
log
1
+
i
A
<
π
67
66
simpld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℑ
log
1
+
i
A
68
28
26
ltaddpos2d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℑ
log
1
+
i
A
↔
ℑ
log
1
−
i
A
<
ℑ
log
1
+
i
A
+
ℑ
log
1
−
i
A
69
67
68
mpbid
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
−
i
A
<
ℑ
log
1
+
i
A
+
ℑ
log
1
−
i
A
70
24
26
29
50
69
lttrd
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
<
ℑ
log
1
+
i
A
+
ℑ
log
1
−
i
A
71
27
25
imaddd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
+
log
1
−
i
A
=
ℑ
log
1
+
i
A
+
ℑ
log
1
−
i
A
72
70
71
breqtrrd
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
<
ℑ
log
1
+
i
A
+
log
1
−
i
A
73
22
a1i
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
π
∈
ℝ
74
0red
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
∈
ℝ
75
49
simprd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
−
i
A
<
0
76
26
74
28
75
ltadd2dd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
+
ℑ
log
1
−
i
A
<
ℑ
log
1
+
i
A
+
0
77
28
recnd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
∈
ℂ
78
77
addridd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
+
0
=
ℑ
log
1
+
i
A
79
76
78
breqtrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
+
ℑ
log
1
−
i
A
<
ℑ
log
1
+
i
A
80
66
simprd
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
<
π
81
29
28
73
79
80
lttrd
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
+
ℑ
log
1
−
i
A
<
π
82
29
73
81
ltled
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
+
ℑ
log
1
−
i
A
≤
π
83
71
82
eqbrtrd
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
+
log
1
−
i
A
≤
π
84
ellogrn
π
π
⊢
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
↔
log
1
+
i
A
+
log
1
−
i
A
∈
ℂ
∧
−
π
<
ℑ
log
1
+
i
A
+
log
1
−
i
A
∧
ℑ
log
1
+
i
A
+
log
1
−
i
A
≤
π
85
21
72
83
84
syl3anbrc
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
86
0red
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
0
∈
ℝ
87
11
adantr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
i
A
∈
ℂ
88
simpr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
0
=
ℜ
A
89
3
adantr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
A
∈
ℂ
90
89
39
syl
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
ℜ
A
=
ℑ
i
A
91
88
90
eqtr2d
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
ℑ
i
A
=
0
92
87
91
reim0bd
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
i
A
∈
ℝ
93
15
19
addcomd
⊢
A
∈
dom
arctan
→
log
1
+
i
A
+
log
1
−
i
A
=
log
1
−
i
A
+
log
1
+
i
A
94
93
ad2antrr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
log
1
+
i
A
+
log
1
−
i
A
=
log
1
−
i
A
+
log
1
+
i
A
95
logrncl
⊢
1
−
i
A
∈
ℂ
∧
1
−
i
A
≠
0
→
log
1
−
i
A
∈
ran
log
96
17
18
95
syl2anc
⊢
A
∈
dom
arctan
→
log
1
−
i
A
∈
ran
log
97
96
ad2antrr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
log
1
−
i
A
∈
ran
log
98
1re
⊢
1
∈
ℝ
99
92
adantr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
i
A
∈
ℝ
100
readdcl
⊢
1
∈
ℝ
∧
i
A
∈
ℝ
→
1
+
i
A
∈
ℝ
101
98
99
100
sylancr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
1
+
i
A
∈
ℝ
102
0red
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
0
∈
ℝ
103
1red
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
1
∈
ℝ
104
0lt1
⊢
0
<
1
105
104
a1i
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
0
<
1
106
addge01
⊢
1
∈
ℝ
∧
i
A
∈
ℝ
→
0
≤
i
A
↔
1
≤
1
+
i
A
107
98
92
106
sylancr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
0
≤
i
A
↔
1
≤
1
+
i
A
108
107
biimpa
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
1
≤
1
+
i
A
109
102
103
101
105
108
ltletrd
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
0
<
1
+
i
A
110
101
109
elrpd
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
1
+
i
A
∈
ℝ
+
111
110
relogcld
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
log
1
+
i
A
∈
ℝ
112
logrnaddcl
⊢
log
1
−
i
A
∈
ran
log
∧
log
1
+
i
A
∈
ℝ
→
log
1
−
i
A
+
log
1
+
i
A
∈
ran
log
113
97
111
112
syl2anc
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
log
1
−
i
A
+
log
1
+
i
A
∈
ran
log
114
94
113
eqeltrd
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
0
≤
i
A
→
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
115
logrncl
⊢
1
+
i
A
∈
ℂ
∧
1
+
i
A
≠
0
→
log
1
+
i
A
∈
ran
log
116
13
14
115
syl2anc
⊢
A
∈
dom
arctan
→
log
1
+
i
A
∈
ran
log
117
116
ad2antrr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
log
1
+
i
A
∈
ran
log
118
92
adantr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
i
A
∈
ℝ
119
resubcl
⊢
1
∈
ℝ
∧
i
A
∈
ℝ
→
1
−
i
A
∈
ℝ
120
98
118
119
sylancr
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
1
−
i
A
∈
ℝ
121
0red
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
0
∈
ℝ
122
1red
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
1
∈
ℝ
123
104
a1i
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
0
<
1
124
1m0e1
⊢
1
−
0
=
1
125
1red
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
1
∈
ℝ
126
92
86
125
lesub2d
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
i
A
≤
0
↔
1
−
0
≤
1
−
i
A
127
126
biimpa
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
1
−
0
≤
1
−
i
A
128
124
127
eqbrtrrid
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
1
≤
1
−
i
A
129
121
122
120
123
128
ltletrd
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
0
<
1
−
i
A
130
120
129
elrpd
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
1
−
i
A
∈
ℝ
+
131
130
relogcld
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
log
1
−
i
A
∈
ℝ
132
logrnaddcl
⊢
log
1
+
i
A
∈
ran
log
∧
log
1
−
i
A
∈
ℝ
→
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
133
117
131
132
syl2anc
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
∧
i
A
≤
0
→
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
134
86
92
114
133
lecasei
⊢
A
∈
dom
arctan
∧
0
=
ℜ
A
→
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
135
85
134
jaodan
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
∨
0
=
ℜ
A
→
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
136
7
135
syldan
⊢
A
∈
dom
arctan
∧
0
≤
ℜ
A
→
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log