Metamath Proof Explorer


Theorem atanlogaddlem

Description: Lemma for atanlogadd . (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion atanlogaddlem Adomarctan0Alog1+iA+log1iAranlog

Proof

Step Hyp Ref Expression
1 0re 0
2 atandm2 AdomarctanA1iA01+iA0
3 2 simp1bi AdomarctanA
4 3 recld AdomarctanA
5 leloe 0A0A0<A0=A
6 1 4 5 sylancr Adomarctan0A0<A0=A
7 6 biimpa Adomarctan0A0<A0=A
8 ax-1cn 1
9 ax-icn i
10 mulcl iAiA
11 9 3 10 sylancr AdomarctaniA
12 addcl 1iA1+iA
13 8 11 12 sylancr Adomarctan1+iA
14 2 simp3bi Adomarctan1+iA0
15 13 14 logcld Adomarctanlog1+iA
16 subcl 1iA1iA
17 8 11 16 sylancr Adomarctan1iA
18 2 simp2bi Adomarctan1iA0
19 17 18 logcld Adomarctanlog1iA
20 15 19 addcld Adomarctanlog1+iA+log1iA
21 20 adantr Adomarctan0<Alog1+iA+log1iA
22 pire π
23 22 renegcli π
24 23 a1i Adomarctan0<Aπ
25 19 adantr Adomarctan0<Alog1iA
26 25 imcld Adomarctan0<Alog1iA
27 15 adantr Adomarctan0<Alog1+iA
28 27 imcld Adomarctan0<Alog1+iA
29 28 26 readdcld Adomarctan0<Alog1+iA+log1iA
30 17 adantr Adomarctan0<A1iA
31 im1 1=0
32 31 oveq1i 1iA=0iA
33 df-neg iA=0iA
34 32 33 eqtr4i 1iA=iA
35 11 adantr Adomarctan0<AiA
36 imsub 1iA1iA=1iA
37 8 35 36 sylancr Adomarctan0<A1iA=1iA
38 3 adantr Adomarctan0<AA
39 reim AA=iA
40 38 39 syl Adomarctan0<AA=iA
41 40 negeqd Adomarctan0<AA=iA
42 34 37 41 3eqtr4a Adomarctan0<A1iA=A
43 4 lt0neg2d Adomarctan0<AA<0
44 43 biimpa Adomarctan0<AA<0
45 42 44 eqbrtrd Adomarctan0<A1iA<0
46 argimlt0 1iA1iA<0log1iAπ0
47 30 45 46 syl2anc Adomarctan0<Alog1iAπ0
48 eliooord log1iAπ0π<log1iAlog1iA<0
49 47 48 syl Adomarctan0<Aπ<log1iAlog1iA<0
50 49 simpld Adomarctan0<Aπ<log1iA
51 13 adantr Adomarctan0<A1+iA
52 simpr Adomarctan0<A0<A
53 imadd 1iA1+iA=1+iA
54 8 35 53 sylancr Adomarctan0<A1+iA=1+iA
55 40 oveq2d Adomarctan0<A1+A=1+iA
56 31 oveq1i 1+A=0+A
57 38 recld Adomarctan0<AA
58 57 recnd Adomarctan0<AA
59 58 addlidd Adomarctan0<A0+A=A
60 56 59 eqtrid Adomarctan0<A1+A=A
61 54 55 60 3eqtr2d Adomarctan0<A1+iA=A
62 52 61 breqtrrd Adomarctan0<A0<1+iA
63 argimgt0 1+iA0<1+iAlog1+iA0π
64 51 62 63 syl2anc Adomarctan0<Alog1+iA0π
65 eliooord log1+iA0π0<log1+iAlog1+iA<π
66 64 65 syl Adomarctan0<A0<log1+iAlog1+iA<π
67 66 simpld Adomarctan0<A0<log1+iA
68 28 26 ltaddpos2d Adomarctan0<A0<log1+iAlog1iA<log1+iA+log1iA
69 67 68 mpbid Adomarctan0<Alog1iA<log1+iA+log1iA
70 24 26 29 50 69 lttrd Adomarctan0<Aπ<log1+iA+log1iA
71 27 25 imaddd Adomarctan0<Alog1+iA+log1iA=log1+iA+log1iA
72 70 71 breqtrrd Adomarctan0<Aπ<log1+iA+log1iA
73 22 a1i Adomarctan0<Aπ
74 0red Adomarctan0<A0
75 49 simprd Adomarctan0<Alog1iA<0
76 26 74 28 75 ltadd2dd Adomarctan0<Alog1+iA+log1iA<log1+iA+0
77 28 recnd Adomarctan0<Alog1+iA
78 77 addridd Adomarctan0<Alog1+iA+0=log1+iA
79 76 78 breqtrd Adomarctan0<Alog1+iA+log1iA<log1+iA
80 66 simprd Adomarctan0<Alog1+iA<π
81 29 28 73 79 80 lttrd Adomarctan0<Alog1+iA+log1iA<π
82 29 73 81 ltled Adomarctan0<Alog1+iA+log1iAπ
83 71 82 eqbrtrd Adomarctan0<Alog1+iA+log1iAπ
84 ellogrn log1+iA+log1iAranloglog1+iA+log1iAπ<log1+iA+log1iAlog1+iA+log1iAπ
85 21 72 83 84 syl3anbrc Adomarctan0<Alog1+iA+log1iAranlog
86 0red Adomarctan0=A0
87 11 adantr Adomarctan0=AiA
88 simpr Adomarctan0=A0=A
89 3 adantr Adomarctan0=AA
90 89 39 syl Adomarctan0=AA=iA
91 88 90 eqtr2d Adomarctan0=AiA=0
92 87 91 reim0bd Adomarctan0=AiA
93 15 19 addcomd Adomarctanlog1+iA+log1iA=log1iA+log1+iA
94 93 ad2antrr Adomarctan0=A0iAlog1+iA+log1iA=log1iA+log1+iA
95 logrncl 1iA1iA0log1iAranlog
96 17 18 95 syl2anc Adomarctanlog1iAranlog
97 96 ad2antrr Adomarctan0=A0iAlog1iAranlog
98 1re 1
99 92 adantr Adomarctan0=A0iAiA
100 readdcl 1iA1+iA
101 98 99 100 sylancr Adomarctan0=A0iA1+iA
102 0red Adomarctan0=A0iA0
103 1red Adomarctan0=A0iA1
104 0lt1 0<1
105 104 a1i Adomarctan0=A0iA0<1
106 addge01 1iA0iA11+iA
107 98 92 106 sylancr Adomarctan0=A0iA11+iA
108 107 biimpa Adomarctan0=A0iA11+iA
109 102 103 101 105 108 ltletrd Adomarctan0=A0iA0<1+iA
110 101 109 elrpd Adomarctan0=A0iA1+iA+
111 110 relogcld Adomarctan0=A0iAlog1+iA
112 logrnaddcl log1iAranloglog1+iAlog1iA+log1+iAranlog
113 97 111 112 syl2anc Adomarctan0=A0iAlog1iA+log1+iAranlog
114 94 113 eqeltrd Adomarctan0=A0iAlog1+iA+log1iAranlog
115 logrncl 1+iA1+iA0log1+iAranlog
116 13 14 115 syl2anc Adomarctanlog1+iAranlog
117 116 ad2antrr Adomarctan0=AiA0log1+iAranlog
118 92 adantr Adomarctan0=AiA0iA
119 resubcl 1iA1iA
120 98 118 119 sylancr Adomarctan0=AiA01iA
121 0red Adomarctan0=AiA00
122 1red Adomarctan0=AiA01
123 104 a1i Adomarctan0=AiA00<1
124 1m0e1 10=1
125 1red Adomarctan0=A1
126 92 86 125 lesub2d Adomarctan0=AiA0101iA
127 126 biimpa Adomarctan0=AiA0101iA
128 124 127 eqbrtrrid Adomarctan0=AiA011iA
129 121 122 120 123 128 ltletrd Adomarctan0=AiA00<1iA
130 120 129 elrpd Adomarctan0=AiA01iA+
131 130 relogcld Adomarctan0=AiA0log1iA
132 logrnaddcl log1+iAranloglog1iAlog1+iA+log1iAranlog
133 117 131 132 syl2anc Adomarctan0=AiA0log1+iA+log1iAranlog
134 86 92 114 133 lecasei Adomarctan0=Alog1+iA+log1iAranlog
135 85 134 jaodan Adomarctan0<A0=Alog1+iA+log1iAranlog
136 7 135 syldan Adomarctan0Alog1+iA+log1iAranlog