Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bézout's identity
bezoutlem4
Next ⟩
bezout
Metamath Proof Explorer
Ascii
Unicode
Theorem
bezoutlem4
Description:
Lemma for
bezout
.
(Contributed by
Mario Carneiro
, 22-Feb-2014)
Ref
Expression
Hypotheses
bezout.1
⊢
M
=
z
∈
ℕ
|
∃
x
∈
ℤ
∃
y
∈
ℤ
z
=
A
x
+
B
y
bezout.3
⊢
φ
→
A
∈
ℤ
bezout.4
⊢
φ
→
B
∈
ℤ
bezout.2
⊢
G
=
sup
M
ℝ
<
bezout.5
⊢
φ
→
¬
A
=
0
∧
B
=
0
Assertion
bezoutlem4
⊢
φ
→
A
gcd
B
∈
M
Proof
Step
Hyp
Ref
Expression
1
bezout.1
⊢
M
=
z
∈
ℕ
|
∃
x
∈
ℤ
∃
y
∈
ℤ
z
=
A
x
+
B
y
2
bezout.3
⊢
φ
→
A
∈
ℤ
3
bezout.4
⊢
φ
→
B
∈
ℤ
4
bezout.2
⊢
G
=
sup
M
ℝ
<
5
bezout.5
⊢
φ
→
¬
A
=
0
∧
B
=
0
6
gcddvds
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
∥
A
∧
A
gcd
B
∥
B
7
2
3
6
syl2anc
⊢
φ
→
A
gcd
B
∥
A
∧
A
gcd
B
∥
B
8
7
simpld
⊢
φ
→
A
gcd
B
∥
A
9
2
3
gcdcld
⊢
φ
→
A
gcd
B
∈
ℕ
0
10
9
nn0zd
⊢
φ
→
A
gcd
B
∈
ℤ
11
divides
⊢
A
gcd
B
∈
ℤ
∧
A
∈
ℤ
→
A
gcd
B
∥
A
↔
∃
s
∈
ℤ
s
A
gcd
B
=
A
12
10
2
11
syl2anc
⊢
φ
→
A
gcd
B
∥
A
↔
∃
s
∈
ℤ
s
A
gcd
B
=
A
13
8
12
mpbid
⊢
φ
→
∃
s
∈
ℤ
s
A
gcd
B
=
A
14
7
simprd
⊢
φ
→
A
gcd
B
∥
B
15
divides
⊢
A
gcd
B
∈
ℤ
∧
B
∈
ℤ
→
A
gcd
B
∥
B
↔
∃
t
∈
ℤ
t
A
gcd
B
=
B
16
10
3
15
syl2anc
⊢
φ
→
A
gcd
B
∥
B
↔
∃
t
∈
ℤ
t
A
gcd
B
=
B
17
14
16
mpbid
⊢
φ
→
∃
t
∈
ℤ
t
A
gcd
B
=
B
18
reeanv
⊢
∃
s
∈
ℤ
∃
t
∈
ℤ
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
↔
∃
s
∈
ℤ
s
A
gcd
B
=
A
∧
∃
t
∈
ℤ
t
A
gcd
B
=
B
19
1
2
3
4
5
bezoutlem2
⊢
φ
→
G
∈
M
20
oveq2
⊢
x
=
u
→
A
x
=
A
u
21
20
oveq1d
⊢
x
=
u
→
A
x
+
B
y
=
A
u
+
B
y
22
21
eqeq2d
⊢
x
=
u
→
z
=
A
x
+
B
y
↔
z
=
A
u
+
B
y
23
oveq2
⊢
y
=
v
→
B
y
=
B
v
24
23
oveq2d
⊢
y
=
v
→
A
u
+
B
y
=
A
u
+
B
v
25
24
eqeq2d
⊢
y
=
v
→
z
=
A
u
+
B
y
↔
z
=
A
u
+
B
v
26
22
25
cbvrex2vw
⊢
∃
x
∈
ℤ
∃
y
∈
ℤ
z
=
A
x
+
B
y
↔
∃
u
∈
ℤ
∃
v
∈
ℤ
z
=
A
u
+
B
v
27
eqeq1
⊢
z
=
G
→
z
=
A
u
+
B
v
↔
G
=
A
u
+
B
v
28
27
2rexbidv
⊢
z
=
G
→
∃
u
∈
ℤ
∃
v
∈
ℤ
z
=
A
u
+
B
v
↔
∃
u
∈
ℤ
∃
v
∈
ℤ
G
=
A
u
+
B
v
29
26
28
bitrid
⊢
z
=
G
→
∃
x
∈
ℤ
∃
y
∈
ℤ
z
=
A
x
+
B
y
↔
∃
u
∈
ℤ
∃
v
∈
ℤ
G
=
A
u
+
B
v
30
29
1
elrab2
⊢
G
∈
M
↔
G
∈
ℕ
∧
∃
u
∈
ℤ
∃
v
∈
ℤ
G
=
A
u
+
B
v
31
19
30
sylib
⊢
φ
→
G
∈
ℕ
∧
∃
u
∈
ℤ
∃
v
∈
ℤ
G
=
A
u
+
B
v
32
31
simprd
⊢
φ
→
∃
u
∈
ℤ
∃
v
∈
ℤ
G
=
A
u
+
B
v
33
simprrl
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
s
∈
ℤ
34
simprll
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
u
∈
ℤ
35
33
34
zmulcld
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
s
u
∈
ℤ
36
simprrr
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
t
∈
ℤ
37
simprlr
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
v
∈
ℤ
38
36
37
zmulcld
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
t
v
∈
ℤ
39
35
38
zaddcld
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
s
u
+
t
v
∈
ℤ
40
10
adantr
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
A
gcd
B
∈
ℤ
41
dvdsmul2
⊢
s
u
+
t
v
∈
ℤ
∧
A
gcd
B
∈
ℤ
→
A
gcd
B
∥
s
u
+
t
v
A
gcd
B
42
39
40
41
syl2anc
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
A
gcd
B
∥
s
u
+
t
v
A
gcd
B
43
35
zcnd
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
s
u
∈
ℂ
44
40
zcnd
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
A
gcd
B
∈
ℂ
45
38
zcnd
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
t
v
∈
ℂ
46
33
zcnd
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
s
∈
ℂ
47
34
zcnd
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
u
∈
ℂ
48
46
47
44
mul32d
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
s
u
A
gcd
B
=
s
A
gcd
B
u
49
36
zcnd
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
t
∈
ℂ
50
37
zcnd
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
v
∈
ℂ
51
49
50
44
mul32d
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
t
v
A
gcd
B
=
t
A
gcd
B
v
52
48
51
oveq12d
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
s
u
A
gcd
B
+
t
v
A
gcd
B
=
s
A
gcd
B
u
+
t
A
gcd
B
v
53
43
44
45
52
joinlmuladdmuld
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
s
u
+
t
v
A
gcd
B
=
s
A
gcd
B
u
+
t
A
gcd
B
v
54
42
53
breqtrd
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
A
gcd
B
∥
s
A
gcd
B
u
+
t
A
gcd
B
v
55
oveq1
⊢
s
A
gcd
B
=
A
→
s
A
gcd
B
u
=
A
u
56
oveq1
⊢
t
A
gcd
B
=
B
→
t
A
gcd
B
v
=
B
v
57
55
56
oveqan12d
⊢
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
s
A
gcd
B
u
+
t
A
gcd
B
v
=
A
u
+
B
v
58
57
breq2d
⊢
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
s
A
gcd
B
u
+
t
A
gcd
B
v
↔
A
gcd
B
∥
A
u
+
B
v
59
54
58
syl5ibcom
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
A
u
+
B
v
60
breq2
⊢
G
=
A
u
+
B
v
→
A
gcd
B
∥
G
↔
A
gcd
B
∥
A
u
+
B
v
61
60
imbi2d
⊢
G
=
A
u
+
B
v
→
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
G
↔
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
A
u
+
B
v
62
59
61
syl5ibrcom
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
∧
s
∈
ℤ
∧
t
∈
ℤ
→
G
=
A
u
+
B
v
→
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
G
63
62
expr
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
→
s
∈
ℤ
∧
t
∈
ℤ
→
G
=
A
u
+
B
v
→
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
G
64
63
com23
⊢
φ
∧
u
∈
ℤ
∧
v
∈
ℤ
→
G
=
A
u
+
B
v
→
s
∈
ℤ
∧
t
∈
ℤ
→
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
G
65
64
rexlimdvva
⊢
φ
→
∃
u
∈
ℤ
∃
v
∈
ℤ
G
=
A
u
+
B
v
→
s
∈
ℤ
∧
t
∈
ℤ
→
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
G
66
32
65
mpd
⊢
φ
→
s
∈
ℤ
∧
t
∈
ℤ
→
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
G
67
66
rexlimdvv
⊢
φ
→
∃
s
∈
ℤ
∃
t
∈
ℤ
s
A
gcd
B
=
A
∧
t
A
gcd
B
=
B
→
A
gcd
B
∥
G
68
18
67
biimtrrid
⊢
φ
→
∃
s
∈
ℤ
s
A
gcd
B
=
A
∧
∃
t
∈
ℤ
t
A
gcd
B
=
B
→
A
gcd
B
∥
G
69
13
17
68
mp2and
⊢
φ
→
A
gcd
B
∥
G
70
31
simpld
⊢
φ
→
G
∈
ℕ
71
dvdsle
⊢
A
gcd
B
∈
ℤ
∧
G
∈
ℕ
→
A
gcd
B
∥
G
→
A
gcd
B
≤
G
72
10
70
71
syl2anc
⊢
φ
→
A
gcd
B
∥
G
→
A
gcd
B
≤
G
73
69
72
mpd
⊢
φ
→
A
gcd
B
≤
G
74
breq2
⊢
A
=
0
→
G
∥
A
↔
G
∥
0
75
1
2
3
bezoutlem1
⊢
φ
→
A
≠
0
→
A
∈
M
76
1
2
3
4
5
bezoutlem3
⊢
φ
→
A
∈
M
→
G
∥
A
77
75
76
syld
⊢
φ
→
A
≠
0
→
G
∥
A
78
70
nnzd
⊢
φ
→
G
∈
ℤ
79
dvdsabsb
⊢
G
∈
ℤ
∧
A
∈
ℤ
→
G
∥
A
↔
G
∥
A
80
78
2
79
syl2anc
⊢
φ
→
G
∥
A
↔
G
∥
A
81
77
80
sylibrd
⊢
φ
→
A
≠
0
→
G
∥
A
82
81
imp
⊢
φ
∧
A
≠
0
→
G
∥
A
83
dvds0
⊢
G
∈
ℤ
→
G
∥
0
84
78
83
syl
⊢
φ
→
G
∥
0
85
74
82
84
pm2.61ne
⊢
φ
→
G
∥
A
86
breq2
⊢
B
=
0
→
G
∥
B
↔
G
∥
0
87
eqid
⊢
z
∈
ℕ
|
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
B
y
+
A
x
=
z
∈
ℕ
|
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
B
y
+
A
x
88
87
3
2
bezoutlem1
⊢
φ
→
B
≠
0
→
B
∈
z
∈
ℕ
|
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
B
y
+
A
x
89
rexcom
⊢
∃
x
∈
ℤ
∃
y
∈
ℤ
z
=
A
x
+
B
y
↔
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
A
x
+
B
y
90
2
zcnd
⊢
φ
→
A
∈
ℂ
91
90
adantr
⊢
φ
∧
y
∈
ℤ
∧
x
∈
ℤ
→
A
∈
ℂ
92
zcn
⊢
x
∈
ℤ
→
x
∈
ℂ
93
92
ad2antll
⊢
φ
∧
y
∈
ℤ
∧
x
∈
ℤ
→
x
∈
ℂ
94
91
93
mulcld
⊢
φ
∧
y
∈
ℤ
∧
x
∈
ℤ
→
A
x
∈
ℂ
95
3
zcnd
⊢
φ
→
B
∈
ℂ
96
95
adantr
⊢
φ
∧
y
∈
ℤ
∧
x
∈
ℤ
→
B
∈
ℂ
97
zcn
⊢
y
∈
ℤ
→
y
∈
ℂ
98
97
ad2antrl
⊢
φ
∧
y
∈
ℤ
∧
x
∈
ℤ
→
y
∈
ℂ
99
96
98
mulcld
⊢
φ
∧
y
∈
ℤ
∧
x
∈
ℤ
→
B
y
∈
ℂ
100
94
99
addcomd
⊢
φ
∧
y
∈
ℤ
∧
x
∈
ℤ
→
A
x
+
B
y
=
B
y
+
A
x
101
100
eqeq2d
⊢
φ
∧
y
∈
ℤ
∧
x
∈
ℤ
→
z
=
A
x
+
B
y
↔
z
=
B
y
+
A
x
102
101
2rexbidva
⊢
φ
→
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
A
x
+
B
y
↔
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
B
y
+
A
x
103
89
102
bitrid
⊢
φ
→
∃
x
∈
ℤ
∃
y
∈
ℤ
z
=
A
x
+
B
y
↔
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
B
y
+
A
x
104
103
rabbidv
⊢
φ
→
z
∈
ℕ
|
∃
x
∈
ℤ
∃
y
∈
ℤ
z
=
A
x
+
B
y
=
z
∈
ℕ
|
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
B
y
+
A
x
105
1
104
eqtrid
⊢
φ
→
M
=
z
∈
ℕ
|
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
B
y
+
A
x
106
105
eleq2d
⊢
φ
→
B
∈
M
↔
B
∈
z
∈
ℕ
|
∃
y
∈
ℤ
∃
x
∈
ℤ
z
=
B
y
+
A
x
107
88
106
sylibrd
⊢
φ
→
B
≠
0
→
B
∈
M
108
1
2
3
4
5
bezoutlem3
⊢
φ
→
B
∈
M
→
G
∥
B
109
107
108
syld
⊢
φ
→
B
≠
0
→
G
∥
B
110
dvdsabsb
⊢
G
∈
ℤ
∧
B
∈
ℤ
→
G
∥
B
↔
G
∥
B
111
78
3
110
syl2anc
⊢
φ
→
G
∥
B
↔
G
∥
B
112
109
111
sylibrd
⊢
φ
→
B
≠
0
→
G
∥
B
113
112
imp
⊢
φ
∧
B
≠
0
→
G
∥
B
114
86
113
84
pm2.61ne
⊢
φ
→
G
∥
B
115
dvdslegcd
⊢
G
∈
ℤ
∧
A
∈
ℤ
∧
B
∈
ℤ
∧
¬
A
=
0
∧
B
=
0
→
G
∥
A
∧
G
∥
B
→
G
≤
A
gcd
B
116
78
2
3
5
115
syl31anc
⊢
φ
→
G
∥
A
∧
G
∥
B
→
G
≤
A
gcd
B
117
85
114
116
mp2and
⊢
φ
→
G
≤
A
gcd
B
118
9
nn0red
⊢
φ
→
A
gcd
B
∈
ℝ
119
70
nnred
⊢
φ
→
G
∈
ℝ
120
118
119
letri3d
⊢
φ
→
A
gcd
B
=
G
↔
A
gcd
B
≤
G
∧
G
≤
A
gcd
B
121
73
117
120
mpbir2and
⊢
φ
→
A
gcd
B
=
G
122
121
19
eqeltrd
⊢
φ
→
A
gcd
B
∈
M