Metamath Proof Explorer


Theorem bezoutlem4

Description: Lemma for bezout . (Contributed by Mario Carneiro, 22-Feb-2014)

Ref Expression
Hypotheses bezout.1 M=z|xyz=Ax+By
bezout.3 φA
bezout.4 φB
bezout.2 G=supM<
bezout.5 φ¬A=0B=0
Assertion bezoutlem4 φAgcdBM

Proof

Step Hyp Ref Expression
1 bezout.1 M=z|xyz=Ax+By
2 bezout.3 φA
3 bezout.4 φB
4 bezout.2 G=supM<
5 bezout.5 φ¬A=0B=0
6 gcddvds ABAgcdBAAgcdBB
7 2 3 6 syl2anc φAgcdBAAgcdBB
8 7 simpld φAgcdBA
9 2 3 gcdcld φAgcdB0
10 9 nn0zd φAgcdB
11 divides AgcdBAAgcdBAssAgcdB=A
12 10 2 11 syl2anc φAgcdBAssAgcdB=A
13 8 12 mpbid φssAgcdB=A
14 7 simprd φAgcdBB
15 divides AgcdBBAgcdBBttAgcdB=B
16 10 3 15 syl2anc φAgcdBBttAgcdB=B
17 14 16 mpbid φttAgcdB=B
18 reeanv stsAgcdB=AtAgcdB=BssAgcdB=AttAgcdB=B
19 1 2 3 4 5 bezoutlem2 φGM
20 oveq2 x=uAx=Au
21 20 oveq1d x=uAx+By=Au+By
22 21 eqeq2d x=uz=Ax+Byz=Au+By
23 oveq2 y=vBy=Bv
24 23 oveq2d y=vAu+By=Au+Bv
25 24 eqeq2d y=vz=Au+Byz=Au+Bv
26 22 25 cbvrex2vw xyz=Ax+Byuvz=Au+Bv
27 eqeq1 z=Gz=Au+BvG=Au+Bv
28 27 2rexbidv z=Guvz=Au+BvuvG=Au+Bv
29 26 28 bitrid z=Gxyz=Ax+ByuvG=Au+Bv
30 29 1 elrab2 GMGuvG=Au+Bv
31 19 30 sylib φGuvG=Au+Bv
32 31 simprd φuvG=Au+Bv
33 simprrl φuvsts
34 simprll φuvstu
35 33 34 zmulcld φuvstsu
36 simprrr φuvstt
37 simprlr φuvstv
38 36 37 zmulcld φuvsttv
39 35 38 zaddcld φuvstsu+tv
40 10 adantr φuvstAgcdB
41 dvdsmul2 su+tvAgcdBAgcdBsu+tvAgcdB
42 39 40 41 syl2anc φuvstAgcdBsu+tvAgcdB
43 35 zcnd φuvstsu
44 40 zcnd φuvstAgcdB
45 38 zcnd φuvsttv
46 33 zcnd φuvsts
47 34 zcnd φuvstu
48 46 47 44 mul32d φuvstsuAgcdB=sAgcdBu
49 36 zcnd φuvstt
50 37 zcnd φuvstv
51 49 50 44 mul32d φuvsttvAgcdB=tAgcdBv
52 48 51 oveq12d φuvstsuAgcdB+tvAgcdB=sAgcdBu+tAgcdBv
53 43 44 45 52 joinlmuladdmuld φuvstsu+tvAgcdB=sAgcdBu+tAgcdBv
54 42 53 breqtrd φuvstAgcdBsAgcdBu+tAgcdBv
55 oveq1 sAgcdB=AsAgcdBu=Au
56 oveq1 tAgcdB=BtAgcdBv=Bv
57 55 56 oveqan12d sAgcdB=AtAgcdB=BsAgcdBu+tAgcdBv=Au+Bv
58 57 breq2d sAgcdB=AtAgcdB=BAgcdBsAgcdBu+tAgcdBvAgcdBAu+Bv
59 54 58 syl5ibcom φuvstsAgcdB=AtAgcdB=BAgcdBAu+Bv
60 breq2 G=Au+BvAgcdBGAgcdBAu+Bv
61 60 imbi2d G=Au+BvsAgcdB=AtAgcdB=BAgcdBGsAgcdB=AtAgcdB=BAgcdBAu+Bv
62 59 61 syl5ibrcom φuvstG=Au+BvsAgcdB=AtAgcdB=BAgcdBG
63 62 expr φuvstG=Au+BvsAgcdB=AtAgcdB=BAgcdBG
64 63 com23 φuvG=Au+BvstsAgcdB=AtAgcdB=BAgcdBG
65 64 rexlimdvva φuvG=Au+BvstsAgcdB=AtAgcdB=BAgcdBG
66 32 65 mpd φstsAgcdB=AtAgcdB=BAgcdBG
67 66 rexlimdvv φstsAgcdB=AtAgcdB=BAgcdBG
68 18 67 biimtrrid φssAgcdB=AttAgcdB=BAgcdBG
69 13 17 68 mp2and φAgcdBG
70 31 simpld φG
71 dvdsle AgcdBGAgcdBGAgcdBG
72 10 70 71 syl2anc φAgcdBGAgcdBG
73 69 72 mpd φAgcdBG
74 breq2 A=0GAG0
75 1 2 3 bezoutlem1 φA0AM
76 1 2 3 4 5 bezoutlem3 φAMGA
77 75 76 syld φA0GA
78 70 nnzd φG
79 dvdsabsb GAGAGA
80 78 2 79 syl2anc φGAGA
81 77 80 sylibrd φA0GA
82 81 imp φA0GA
83 dvds0 GG0
84 78 83 syl φG0
85 74 82 84 pm2.61ne φGA
86 breq2 B=0GBG0
87 eqid z|yxz=By+Ax=z|yxz=By+Ax
88 87 3 2 bezoutlem1 φB0Bz|yxz=By+Ax
89 rexcom xyz=Ax+Byyxz=Ax+By
90 2 zcnd φA
91 90 adantr φyxA
92 zcn xx
93 92 ad2antll φyxx
94 91 93 mulcld φyxAx
95 3 zcnd φB
96 95 adantr φyxB
97 zcn yy
98 97 ad2antrl φyxy
99 96 98 mulcld φyxBy
100 94 99 addcomd φyxAx+By=By+Ax
101 100 eqeq2d φyxz=Ax+Byz=By+Ax
102 101 2rexbidva φyxz=Ax+Byyxz=By+Ax
103 89 102 bitrid φxyz=Ax+Byyxz=By+Ax
104 103 rabbidv φz|xyz=Ax+By=z|yxz=By+Ax
105 1 104 eqtrid φM=z|yxz=By+Ax
106 105 eleq2d φBMBz|yxz=By+Ax
107 88 106 sylibrd φB0BM
108 1 2 3 4 5 bezoutlem3 φBMGB
109 107 108 syld φB0GB
110 dvdsabsb GBGBGB
111 78 3 110 syl2anc φGBGB
112 109 111 sylibrd φB0GB
113 112 imp φB0GB
114 86 113 84 pm2.61ne φGB
115 dvdslegcd GAB¬A=0B=0GAGBGAgcdB
116 78 2 3 5 115 syl31anc φGAGBGAgcdB
117 85 114 116 mp2and φGAgcdB
118 9 nn0red φAgcdB
119 70 nnred φG
120 118 119 letri3d φAgcdB=GAgcdBGGAgcdB
121 73 117 120 mpbir2and φAgcdB=G
122 121 19 eqeltrd φAgcdBM