Metamath Proof Explorer


Theorem binomlem

Description: Lemma for binom (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses binomlem.1 φA
binomlem.2 φB
binomlem.3 φN0
binomlem.4 ψA+BN=k=0N(Nk)ANkBk
Assertion binomlem φψA+BN+1=k=0N+1(N+1k)AN+1-kBk

Proof

Step Hyp Ref Expression
1 binomlem.1 φA
2 binomlem.2 φB
3 binomlem.3 φN0
4 binomlem.4 ψA+BN=k=0N(Nk)ANkBk
5 4 adantl φψA+BN=k=0N(Nk)ANkBk
6 5 oveq1d φψA+BNA=k=0N(Nk)ANkBkA
7 fzfid φ0NFin
8 fzelp1 k0Nk0N+1
9 elfzelz k0N+1k
10 bccl N0k(Nk)0
11 3 9 10 syl2an φk0N+1(Nk)0
12 11 nn0cnd φk0N+1(Nk)
13 8 12 sylan2 φk0N(Nk)
14 fznn0sub k0NNk0
15 expcl ANk0ANk
16 1 14 15 syl2an φk0NANk
17 elfznn0 k0N+1k0
18 expcl Bk0Bk
19 2 17 18 syl2an φk0N+1Bk
20 8 19 sylan2 φk0NBk
21 16 20 mulcld φk0NANkBk
22 13 21 mulcld φk0N(Nk)ANkBk
23 7 1 22 fsummulc1 φk=0N(Nk)ANkBkA=k=0N(Nk)ANkBkA
24 1 adantr φk0NA
25 13 21 24 mulassd φk0N(Nk)ANkBkA=(Nk)ANkBkA
26 3 nn0cnd φN
27 26 adantr φk0NN
28 1cnd φk0N1
29 elfzelz k0Nk
30 29 adantl φk0Nk
31 30 zcnd φk0Nk
32 27 28 31 addsubd φk0NN+1-k=N-k+1
33 32 oveq2d φk0NAN+1-k=AN-k+1
34 expp1 ANk0AN-k+1=ANkA
35 1 14 34 syl2an φk0NAN-k+1=ANkA
36 33 35 eqtrd φk0NAN+1-k=ANkA
37 36 oveq1d φk0NAN+1-kBk=ANkABk
38 16 24 20 mul32d φk0NANkABk=ANkBkA
39 37 38 eqtrd φk0NAN+1-kBk=ANkBkA
40 39 oveq2d φk0N(Nk)AN+1-kBk=(Nk)ANkBkA
41 25 40 eqtr4d φk0N(Nk)ANkBkA=(Nk)AN+1-kBk
42 41 sumeq2dv φk=0N(Nk)ANkBkA=k=0N(Nk)AN+1-kBk
43 fzssp1 0N0N+1
44 43 a1i φ0N0N+1
45 fznn0sub k0N+1N+1-k0
46 expcl AN+1-k0AN+1-k
47 1 45 46 syl2an φk0N+1AN+1-k
48 47 19 mulcld φk0N+1AN+1-kBk
49 12 48 mulcld φk0N+1(Nk)AN+1-kBk
50 8 49 sylan2 φk0N(Nk)AN+1-kBk
51 3 adantr φk0N+10NN0
52 eldifi k0N+10Nk0N+1
53 52 9 syl k0N+10Nk
54 53 adantl φk0N+10Nk
55 eldifn k0N+10N¬k0N
56 55 adantl φk0N+10N¬k0N
57 bcval3 N0k¬k0N(Nk)=0
58 51 54 56 57 syl3anc φk0N+10N(Nk)=0
59 58 oveq1d φk0N+10N(Nk)AN+1-kBk=0AN+1-kBk
60 48 mul02d φk0N+10AN+1-kBk=0
61 52 60 sylan2 φk0N+10N0AN+1-kBk=0
62 59 61 eqtrd φk0N+10N(Nk)AN+1-kBk=0
63 fzssuz 0N+10
64 63 a1i φ0N+10
65 44 50 62 64 sumss φk=0N(Nk)AN+1-kBk=k=0N+1(Nk)AN+1-kBk
66 23 42 65 3eqtrd φk=0N(Nk)ANkBkA=k=0N+1(Nk)AN+1-kBk
67 66 adantr φψk=0N(Nk)ANkBkA=k=0N+1(Nk)AN+1-kBk
68 6 67 eqtrd φψA+BNA=k=0N+1(Nk)AN+1-kBk
69 4 oveq1d ψA+BNB=k=0N(Nk)ANkBkB
70 7 2 22 fsummulc1 φk=0N(Nk)ANkBkB=k=0N(Nk)ANkBkB
71 1zzd φ1
72 0z 0
73 72 a1i φ0
74 3 nn0zd φN
75 2 adantr φk0NB
76 22 75 mulcld φk0N(Nk)ANkBkB
77 oveq2 k=j1(Nk)=(Nj1)
78 oveq2 k=j1Nk=Nj1
79 78 oveq2d k=j1ANk=ANj1
80 oveq2 k=j1Bk=Bj1
81 79 80 oveq12d k=j1ANkBk=ANj1Bj1
82 77 81 oveq12d k=j1(Nk)ANkBk=(Nj1)ANj1Bj1
83 82 oveq1d k=j1(Nk)ANkBkB=(Nj1)ANj1Bj1B
84 71 73 74 76 83 fsumshft φk=0N(Nk)ANkBkB=j=0+1N+1(Nj1)ANj1Bj1B
85 oveq1 j=kj1=k1
86 85 oveq2d j=k(Nj1)=(Nk1)
87 85 oveq2d j=kNj1=Nk1
88 87 oveq2d j=kANj1=ANk1
89 85 oveq2d j=kBj1=Bk1
90 88 89 oveq12d j=kANj1Bj1=ANk1Bk1
91 86 90 oveq12d j=k(Nj1)ANj1Bj1=(Nk1)ANk1Bk1
92 91 oveq1d j=k(Nj1)ANj1Bj1B=(Nk1)ANk1Bk1B
93 92 cbvsumv j=0+1N+1(Nj1)ANj1Bj1B=k=0+1N+1(Nk1)ANk1Bk1B
94 84 93 eqtrdi φk=0N(Nk)ANkBkB=k=0+1N+1(Nk1)ANk1Bk1B
95 26 adantr φk0+1N+1N
96 elfzelz k0+1N+1k
97 96 adantl φk0+1N+1k
98 97 zcnd φk0+1N+1k
99 1cnd φk0+1N+11
100 95 98 99 subsub3d φk0+1N+1Nk1=N+1-k
101 100 oveq2d φk0+1N+1ANk1=AN+1-k
102 101 oveq1d φk0+1N+1ANk1Bk1=AN+1-kBk1
103 102 oveq2d φk0+1N+1(Nk1)ANk1Bk1=(Nk1)AN+1-kBk1
104 103 oveq1d φk0+1N+1(Nk1)ANk1Bk1B=(Nk1)AN+1-kBk1B
105 fzp1ss 00+1N+10N+1
106 72 105 ax-mp 0+1N+10N+1
107 106 sseli k0+1N+1k0N+1
108 9 adantl φk0N+1k
109 peano2zm kk1
110 108 109 syl φk0N+1k1
111 bccl N0k1(Nk1)0
112 3 110 111 syl2an2r φk0N+1(Nk1)0
113 112 nn0cnd φk0N+1(Nk1)
114 107 113 sylan2 φk0+1N+1(Nk1)
115 107 47 sylan2 φk0+1N+1AN+1-k
116 2 adantr φk0+1N+1B
117 elfznn k1N+1k
118 0p1e1 0+1=1
119 118 oveq1i 0+1N+1=1N+1
120 117 119 eleq2s k0+1N+1k
121 120 adantl φk0+1N+1k
122 nnm1nn0 kk10
123 121 122 syl φk0+1N+1k10
124 116 123 expcld φk0+1N+1Bk1
125 115 124 mulcld φk0+1N+1AN+1-kBk1
126 114 125 116 mulassd φk0+1N+1(Nk1)AN+1-kBk1B=(Nk1)AN+1-kBk1B
127 115 124 116 mulassd φk0+1N+1AN+1-kBk1B=AN+1-kBk1B
128 expm1t BkBk=Bk1B
129 2 120 128 syl2an φk0+1N+1Bk=Bk1B
130 129 oveq2d φk0+1N+1AN+1-kBk=AN+1-kBk1B
131 127 130 eqtr4d φk0+1N+1AN+1-kBk1B=AN+1-kBk
132 131 oveq2d φk0+1N+1(Nk1)AN+1-kBk1B=(Nk1)AN+1-kBk
133 104 126 132 3eqtrd φk0+1N+1(Nk1)ANk1Bk1B=(Nk1)AN+1-kBk
134 133 sumeq2dv φk=0+1N+1(Nk1)ANk1Bk1B=k=0+1N+1(Nk1)AN+1-kBk
135 106 a1i φ0+1N+10N+1
136 113 48 mulcld φk0N+1(Nk1)AN+1-kBk
137 107 136 sylan2 φk0+1N+1(Nk1)AN+1-kBk
138 3 adantr φk0N+10+1N+1N0
139 eldifi k0N+10+1N+1k0N+1
140 139 adantl φk0N+10+1N+1k0N+1
141 140 9 syl φk0N+10+1N+1k
142 141 109 syl φk0N+10+1N+1k1
143 eldifn k0N+10+1N+1¬k0+1N+1
144 143 adantl φk0N+10+1N+1¬k0+1N+1
145 72 a1i φk0N+10+1N+10
146 138 nn0zd φk0N+10+1N+1N
147 1zzd φk0N+10+1N+11
148 fzaddel 0Nk11k10Nk-1+10+1N+1
149 145 146 142 147 148 syl22anc φk0N+10+1N+1k10Nk-1+10+1N+1
150 141 zcnd φk0N+10+1N+1k
151 ax-1cn 1
152 npcan k1k-1+1=k
153 150 151 152 sylancl φk0N+10+1N+1k-1+1=k
154 153 eleq1d φk0N+10+1N+1k-1+10+1N+1k0+1N+1
155 149 154 bitrd φk0N+10+1N+1k10Nk0+1N+1
156 144 155 mtbird φk0N+10+1N+1¬k10N
157 bcval3 N0k1¬k10N(Nk1)=0
158 138 142 156 157 syl3anc φk0N+10+1N+1(Nk1)=0
159 158 oveq1d φk0N+10+1N+1(Nk1)AN+1-kBk=0AN+1-kBk
160 139 60 sylan2 φk0N+10+1N+10AN+1-kBk=0
161 159 160 eqtrd φk0N+10+1N+1(Nk1)AN+1-kBk=0
162 135 137 161 64 sumss φk=0+1N+1(Nk1)AN+1-kBk=k=0N+1(Nk1)AN+1-kBk
163 94 134 162 3eqtrd φk=0N(Nk)ANkBkB=k=0N+1(Nk1)AN+1-kBk
164 70 163 eqtrd φk=0N(Nk)ANkBkB=k=0N+1(Nk1)AN+1-kBk
165 69 164 sylan9eqr φψA+BNB=k=0N+1(Nk1)AN+1-kBk
166 68 165 oveq12d φψA+BNA+A+BNB=k=0N+1(Nk)AN+1-kBk+k=0N+1(Nk1)AN+1-kBk
167 1 2 addcld φA+B
168 167 3 expp1d φA+BN+1=A+BNA+B
169 167 3 expcld φA+BN
170 169 1 2 adddid φA+BNA+B=A+BNA+A+BNB
171 168 170 eqtrd φA+BN+1=A+BNA+A+BNB
172 171 adantr φψA+BN+1=A+BNA+A+BNB
173 bcpasc N0k(Nk)+(Nk1)=(N+1k)
174 3 9 173 syl2an φk0N+1(Nk)+(Nk1)=(N+1k)
175 174 oveq1d φk0N+1(Nk)+(Nk1)AN+1-kBk=(N+1k)AN+1-kBk
176 12 113 48 adddird φk0N+1(Nk)+(Nk1)AN+1-kBk=(Nk)AN+1-kBk+(Nk1)AN+1-kBk
177 175 176 eqtr3d φk0N+1(N+1k)AN+1-kBk=(Nk)AN+1-kBk+(Nk1)AN+1-kBk
178 177 sumeq2dv φk=0N+1(N+1k)AN+1-kBk=k=0N+1(Nk)AN+1-kBk+(Nk1)AN+1-kBk
179 fzfid φ0N+1Fin
180 179 49 136 fsumadd φk=0N+1(Nk)AN+1-kBk+(Nk1)AN+1-kBk=k=0N+1(Nk)AN+1-kBk+k=0N+1(Nk1)AN+1-kBk
181 178 180 eqtrd φk=0N+1(N+1k)AN+1-kBk=k=0N+1(Nk)AN+1-kBk+k=0N+1(Nk1)AN+1-kBk
182 181 adantr φψk=0N+1(N+1k)AN+1-kBk=k=0N+1(Nk)AN+1-kBk+k=0N+1(Nk1)AN+1-kBk
183 166 172 182 3eqtr4d φψA+BN+1=k=0N+1(N+1k)AN+1-kBk