| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  | 
						
							| 2 |  | 0wdom |  | 
						
							| 3 |  | breq1 |  | 
						
							| 4 | 2 3 | syl5ibrcom |  | 
						
							| 5 | 4 | imp |  | 
						
							| 6 |  | 0elpw |  | 
						
							| 7 |  | f1o0 |  | 
						
							| 8 |  | f1ofo |  | 
						
							| 9 |  | 0ex |  | 
						
							| 10 |  | foeq1 |  | 
						
							| 11 | 9 10 | spcev |  | 
						
							| 12 | 7 8 11 | mp2b |  | 
						
							| 13 |  | foeq2 |  | 
						
							| 14 | 13 | exbidv |  | 
						
							| 15 | 14 | rspcev |  | 
						
							| 16 | 6 12 15 | mp2an |  | 
						
							| 17 |  | foeq3 |  | 
						
							| 18 | 17 | exbidv |  | 
						
							| 19 | 18 | rexbidv |  | 
						
							| 20 | 16 19 | mpbiri |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 | 5 21 | 2thd |  | 
						
							| 23 |  | brwdomn0 |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 |  | foeq1 |  | 
						
							| 26 | 25 | cbvexvw |  | 
						
							| 27 |  | pwidg |  | 
						
							| 28 | 27 | ad2antrr |  | 
						
							| 29 |  | foeq2 |  | 
						
							| 30 | 29 | exbidv |  | 
						
							| 31 | 30 | rspcev |  | 
						
							| 32 | 28 31 | sylancom |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 26 33 | biimtrid |  | 
						
							| 35 |  | n0 |  | 
						
							| 36 | 35 | biimpi |  | 
						
							| 37 | 36 | ad2antlr |  | 
						
							| 38 |  | vex |  | 
						
							| 39 |  | difexg |  | 
						
							| 40 |  | vsnex |  | 
						
							| 41 |  | xpexg |  | 
						
							| 42 | 39 40 41 | sylancl |  | 
						
							| 43 |  | unexg |  | 
						
							| 44 | 38 42 43 | sylancr |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 |  | fofn |  | 
						
							| 48 | 47 | adantl |  | 
						
							| 49 | 48 | ad2antlr |  | 
						
							| 50 |  | vex |  | 
						
							| 51 |  | fnconstg |  | 
						
							| 52 | 50 51 | mp1i |  | 
						
							| 53 |  | disjdif |  | 
						
							| 54 | 53 | a1i |  | 
						
							| 55 | 49 52 54 | fnund |  | 
						
							| 56 |  | elpwi |  | 
						
							| 57 |  | undif |  | 
						
							| 58 | 56 57 | sylib |  | 
						
							| 59 | 58 | ad2antrl |  | 
						
							| 60 | 59 | adantr |  | 
						
							| 61 | 60 | fneq2d |  | 
						
							| 62 | 55 61 | mpbid |  | 
						
							| 63 |  | rnun |  | 
						
							| 64 |  | forn |  | 
						
							| 65 | 64 | ad2antll |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 | 66 | uneq1d |  | 
						
							| 68 |  | fconst6g |  | 
						
							| 69 | 68 | frnd |  | 
						
							| 70 | 69 | adantl |  | 
						
							| 71 |  | ssequn2 |  | 
						
							| 72 | 70 71 | sylib |  | 
						
							| 73 | 67 72 | eqtrd |  | 
						
							| 74 | 63 73 | eqtrid |  | 
						
							| 75 |  | df-fo |  | 
						
							| 76 | 62 74 75 | sylanbrc |  | 
						
							| 77 |  | foeq1 |  | 
						
							| 78 | 46 76 77 | spcedv |  | 
						
							| 79 | 37 78 | exlimddv |  | 
						
							| 80 | 79 | expr |  | 
						
							| 81 | 80 | exlimdv |  | 
						
							| 82 | 81 | rexlimdva |  | 
						
							| 83 | 34 82 | impbid |  | 
						
							| 84 | 24 83 | bitrd |  | 
						
							| 85 | 22 84 | pm2.61dane |  | 
						
							| 86 | 1 85 | syl |  |