Metamath Proof Explorer


Theorem brwdom2

Description: Alternate characterization of the weak dominance predicate which does not require special treatment of the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion brwdom2 YVX*Yy𝒫Yzz:yontoX

Proof

Step Hyp Ref Expression
1 elex YVYV
2 0wdom YV*Y
3 breq1 X=X*Y*Y
4 2 3 syl5ibrcom YVX=X*Y
5 4 imp YVX=X*Y
6 0elpw 𝒫Y
7 f1o0 :1-1 onto
8 f1ofo :1-1 onto:onto
9 0ex V
10 foeq1 z=z:onto:onto
11 9 10 spcev :ontozz:onto
12 7 8 11 mp2b zz:onto
13 foeq2 y=z:yontoz:onto
14 13 exbidv y=zz:yontozz:onto
15 14 rspcev 𝒫Yzz:ontoy𝒫Yzz:yonto
16 6 12 15 mp2an y𝒫Yzz:yonto
17 foeq3 X=z:yontoXz:yonto
18 17 exbidv X=zz:yontoXzz:yonto
19 18 rexbidv X=y𝒫Yzz:yontoXy𝒫Yzz:yonto
20 16 19 mpbiri X=y𝒫Yzz:yontoX
21 20 adantl YVX=y𝒫Yzz:yontoX
22 5 21 2thd YVX=X*Yy𝒫Yzz:yontoX
23 brwdomn0 XX*Yxx:YontoX
24 23 adantl YVXX*Yxx:YontoX
25 foeq1 x=zx:YontoXz:YontoX
26 25 cbvexvw xx:YontoXzz:YontoX
27 pwidg YVY𝒫Y
28 27 ad2antrr YVXzz:YontoXY𝒫Y
29 foeq2 y=Yz:yontoXz:YontoX
30 29 exbidv y=Yzz:yontoXzz:YontoX
31 30 rspcev Y𝒫Yzz:YontoXy𝒫Yzz:yontoX
32 28 31 sylancom YVXzz:YontoXy𝒫Yzz:yontoX
33 32 ex YVXzz:YontoXy𝒫Yzz:yontoX
34 26 33 biimtrid YVXxx:YontoXy𝒫Yzz:yontoX
35 n0 XwwX
36 35 biimpi XwwX
37 36 ad2antlr YVXy𝒫Yz:yontoXwwX
38 vex zV
39 difexg YVYyV
40 vsnex wV
41 xpexg YyVwVYy×wV
42 39 40 41 sylancl YVYy×wV
43 unexg zVYy×wVzYy×wV
44 38 42 43 sylancr YVzYy×wV
45 44 adantr YVXzYy×wV
46 45 ad2antrr YVXy𝒫Yz:yontoXwXzYy×wV
47 fofn z:yontoXzFny
48 47 adantl y𝒫Yz:yontoXzFny
49 48 ad2antlr YVXy𝒫Yz:yontoXwXzFny
50 vex wV
51 fnconstg wVYy×wFnYy
52 50 51 mp1i YVXy𝒫Yz:yontoXwXYy×wFnYy
53 disjdif yYy=
54 53 a1i YVXy𝒫Yz:yontoXwXyYy=
55 49 52 54 fnund YVXy𝒫Yz:yontoXwXzYy×wFnyYy
56 elpwi y𝒫YyY
57 undif yYyYy=Y
58 56 57 sylib y𝒫YyYy=Y
59 58 ad2antrl YVXy𝒫Yz:yontoXyYy=Y
60 59 adantr YVXy𝒫Yz:yontoXwXyYy=Y
61 60 fneq2d YVXy𝒫Yz:yontoXwXzYy×wFnyYyzYy×wFnY
62 55 61 mpbid YVXy𝒫Yz:yontoXwXzYy×wFnY
63 rnun ranzYy×w=ranzranYy×w
64 forn z:yontoXranz=X
65 64 ad2antll YVXy𝒫Yz:yontoXranz=X
66 65 adantr YVXy𝒫Yz:yontoXwXranz=X
67 66 uneq1d YVXy𝒫Yz:yontoXwXranzranYy×w=XranYy×w
68 fconst6g wXYy×w:YyX
69 68 frnd wXranYy×wX
70 69 adantl YVXy𝒫Yz:yontoXwXranYy×wX
71 ssequn2 ranYy×wXXranYy×w=X
72 70 71 sylib YVXy𝒫Yz:yontoXwXXranYy×w=X
73 67 72 eqtrd YVXy𝒫Yz:yontoXwXranzranYy×w=X
74 63 73 eqtrid YVXy𝒫Yz:yontoXwXranzYy×w=X
75 df-fo zYy×w:YontoXzYy×wFnYranzYy×w=X
76 62 74 75 sylanbrc YVXy𝒫Yz:yontoXwXzYy×w:YontoX
77 foeq1 x=zYy×wx:YontoXzYy×w:YontoX
78 46 76 77 spcedv YVXy𝒫Yz:yontoXwXxx:YontoX
79 37 78 exlimddv YVXy𝒫Yz:yontoXxx:YontoX
80 79 expr YVXy𝒫Yz:yontoXxx:YontoX
81 80 exlimdv YVXy𝒫Yzz:yontoXxx:YontoX
82 81 rexlimdva YVXy𝒫Yzz:yontoXxx:YontoX
83 34 82 impbid YVXxx:YontoXy𝒫Yzz:yontoX
84 24 83 bitrd YVXX*Yy𝒫Yzz:yontoX
85 22 84 pm2.61dane YVX*Yy𝒫Yzz:yontoX
86 1 85 syl YVX*Yy𝒫Yzz:yontoX