Metamath Proof Explorer


Theorem btwnconn1lem11

Description: Lemma for btwnconn1 . Now, we establish that D and Q are equidistant from C . (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P D C Cgr Q C

Proof

Step Hyp Ref Expression
1 btwnconn1lem8 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R P Cgr E d
2 btwnconn1lem9 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr E D
3 btwnconn1lem10 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d D Cgr P Q
4 1 2 3 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R P Cgr E d R Q Cgr E D d D Cgr P Q
5 4 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d = E R P Cgr E d R Q Cgr E D d D Cgr P Q
6 simpr3r E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr R P
7 6 adantl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr R P
8 simpr2r E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C R Cgr C E
9 8 adantl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C R Cgr C E
10 7 9 jca A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr R P C R Cgr C E
11 opeq2 d = E C d = C E
12 11 breq2d d = E C R Cgr C d C R Cgr C E
13 12 anbi2d d = E R Q Cgr R P C R Cgr C d R Q Cgr R P C R Cgr C E
14 opeq1 d = E d d = E d
15 14 breq2d d = E R P Cgr d d R P Cgr E d
16 opeq1 d = E d D = E D
17 16 breq2d d = E R Q Cgr d D R Q Cgr E D
18 15 17 3anbi12d d = E R P Cgr d d R Q Cgr d D d D Cgr P Q R P Cgr E d R Q Cgr E D d D Cgr P Q
19 13 18 anbi12d d = E R Q Cgr R P C R Cgr C d R P Cgr d d R Q Cgr d D d D Cgr P Q R Q Cgr R P C R Cgr C E R P Cgr E d R Q Cgr E D d D Cgr P Q
20 19 biimpar d = E R Q Cgr R P C R Cgr C E R P Cgr E d R Q Cgr E D d D Cgr P Q R Q Cgr R P C R Cgr C d R P Cgr d d R Q Cgr d D d D Cgr P Q
21 simpr1 R Q Cgr R P C R Cgr C d R P Cgr d d R Q Cgr d D d D Cgr P Q R P Cgr d d
22 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N
23 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R 𝔼 N
24 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P 𝔼 N
25 simp2r1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d 𝔼 N
26 axcgrid N R 𝔼 N P 𝔼 N d 𝔼 N R P Cgr d d R = P
27 22 23 24 25 26 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R P Cgr d d R = P
28 21 27 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R Q Cgr R P C R Cgr C d R P Cgr d d R Q Cgr d D d D Cgr P Q R = P
29 opeq1 R = P R Q = P Q
30 opeq1 R = P R P = P P
31 29 30 breq12d R = P R Q Cgr R P P Q Cgr P P
32 opeq2 R = P C R = C P
33 32 breq1d R = P C R Cgr C d C P Cgr C d
34 31 33 anbi12d R = P R Q Cgr R P C R Cgr C d P Q Cgr P P C P Cgr C d
35 30 breq1d R = P R P Cgr d d P P Cgr d d
36 29 breq1d R = P R Q Cgr d D P Q Cgr d D
37 35 36 3anbi12d R = P R P Cgr d d R Q Cgr d D d D Cgr P Q P P Cgr d d P Q Cgr d D d D Cgr P Q
38 34 37 anbi12d R = P R Q Cgr R P C R Cgr C d R P Cgr d d R Q Cgr d D d D Cgr P Q P Q Cgr P P C P Cgr C d P P Cgr d d P Q Cgr d D d D Cgr P Q
39 38 biimpac R Q Cgr R P C R Cgr C d R P Cgr d d R Q Cgr d D d D Cgr P Q R = P P Q Cgr P P C P Cgr C d P P Cgr d d P Q Cgr d D d D Cgr P Q
40 simpll P Q Cgr P P C P Cgr C d P P Cgr d d P Q Cgr d D d D Cgr P Q P Q Cgr P P
41 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N Q 𝔼 N
42 axcgrid N P 𝔼 N Q 𝔼 N P 𝔼 N P Q Cgr P P P = Q
43 22 24 41 24 42 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q Cgr P P P = Q
44 40 43 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q Cgr P P C P Cgr C d P P Cgr d d P Q Cgr d D d D Cgr P Q P = Q
45 simprlr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P C P Cgr C d
46 simpr3 P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P d D Cgr P P
47 simp2l2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N D 𝔼 N
48 axcgrid N d 𝔼 N D 𝔼 N P 𝔼 N d D Cgr P P d = D
49 22 25 47 24 48 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d D Cgr P P d = D
50 46 49 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P d = D
51 50 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P d = D
52 51 opeq2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P C d = C D
53 52 breq2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P C P Cgr C d C P Cgr C D
54 simp2l1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C 𝔼 N
55 cgrcomlr N C 𝔼 N P 𝔼 N C 𝔼 N D 𝔼 N C P Cgr C D P C Cgr D C
56 22 54 24 54 47 55 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C P Cgr C D P C Cgr D C
57 cgrcom N P 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N P C Cgr D C D C Cgr P C
58 22 24 54 47 54 57 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P C Cgr D C D C Cgr P C
59 56 58 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C P Cgr C D D C Cgr P C
60 59 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P C P Cgr C D D C Cgr P C
61 53 60 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P C P Cgr C d D C Cgr P C
62 45 61 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P D C Cgr P C
63 62 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P D C Cgr P C
64 opeq2 P = Q P P = P Q
65 64 breq1d P = Q P P Cgr P P P Q Cgr P P
66 65 anbi1d P = Q P P Cgr P P C P Cgr C d P Q Cgr P P C P Cgr C d
67 64 breq1d P = Q P P Cgr d D P Q Cgr d D
68 64 breq2d P = Q d D Cgr P P d D Cgr P Q
69 67 68 3anbi23d P = Q P P Cgr d d P P Cgr d D d D Cgr P P P P Cgr d d P Q Cgr d D d D Cgr P Q
70 66 69 anbi12d P = Q P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P P Q Cgr P P C P Cgr C d P P Cgr d d P Q Cgr d D d D Cgr P Q
71 opeq1 P = Q P C = Q C
72 71 breq2d P = Q D C Cgr P C D C Cgr Q C
73 70 72 imbi12d P = Q P P Cgr P P C P Cgr C d P P Cgr d d P P Cgr d D d D Cgr P P D C Cgr P C P Q Cgr P P C P Cgr C d P P Cgr d d P Q Cgr d D d D Cgr P Q D C Cgr Q C
74 63 73 syl5ibcom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P = Q P Q Cgr P P C P Cgr C d P P Cgr d d P Q Cgr d D d D Cgr P Q D C Cgr Q C
75 74 com23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q Cgr P P C P Cgr C d P P Cgr d d P Q Cgr d D d D Cgr P Q P = Q D C Cgr Q C
76 44 75 mpdd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q Cgr P P C P Cgr C d P P Cgr d d P Q Cgr d D d D Cgr P Q D C Cgr Q C
77 39 76 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R Q Cgr R P C R Cgr C d R P Cgr d d R Q Cgr d D d D Cgr P Q R = P D C Cgr Q C
78 77 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R Q Cgr R P C R Cgr C d R P Cgr d d R Q Cgr d D d D Cgr P Q R = P D C Cgr Q C
79 28 78 mpdd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R Q Cgr R P C R Cgr C d R P Cgr d d R Q Cgr d D d D Cgr P Q D C Cgr Q C
80 20 79 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d = E R Q Cgr R P C R Cgr C E R P Cgr E d R Q Cgr E D d D Cgr P Q D C Cgr Q C
81 80 exp4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d = E R Q Cgr R P C R Cgr C E R P Cgr E d R Q Cgr E D d D Cgr P Q D C Cgr Q C
82 81 com23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R Q Cgr R P C R Cgr C E d = E R P Cgr E d R Q Cgr E D d D Cgr P Q D C Cgr Q C
83 10 82 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d = E R P Cgr E d R Q Cgr E D d D Cgr P Q D C Cgr Q C
84 83 imp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d = E R P Cgr E d R Q Cgr E D d D Cgr P Q D C Cgr Q C
85 5 84 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d = E D C Cgr Q C
86 simp2r3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N E 𝔼 N
87 simprlr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn D d
88 87 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn D d
89 22 86 47 25 88 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn d D
90 cgrcomlr N R 𝔼 N P 𝔼 N E 𝔼 N d 𝔼 N R P Cgr E d P R Cgr d E
91 22 23 24 86 25 90 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R P Cgr E d P R Cgr d E
92 cgrcom N P 𝔼 N R 𝔼 N d 𝔼 N E 𝔼 N P R Cgr d E d E Cgr P R
93 22 24 23 25 86 92 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P R Cgr d E d E Cgr P R
94 91 93 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R P Cgr E d d E Cgr P R
95 94 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R P Cgr E d d E Cgr P R
96 1 95 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d E Cgr P R
97 22 23 41 86 47 2 cgrcomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E D Cgr R Q
98 brcgr3 N d 𝔼 N E 𝔼 N D 𝔼 N P 𝔼 N R 𝔼 N Q 𝔼 N d E D Cgr3 P R Q d E Cgr P R d D Cgr P Q E D Cgr R Q
99 22 25 86 47 24 23 41 98 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d E D Cgr3 P R Q d E Cgr P R d D Cgr P Q E D Cgr R Q
100 99 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d E D Cgr3 P R Q d E Cgr P R d D Cgr P Q E D Cgr R Q
101 96 3 97 100 mpbir3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d E D Cgr3 P R Q
102 simpr1r E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C d
103 102 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C d
104 cgrcomlr N C 𝔼 N P 𝔼 N C 𝔼 N d 𝔼 N C P Cgr C d P C Cgr d C
105 22 54 24 54 25 104 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C P Cgr C d P C Cgr d C
106 cgrcom N P 𝔼 N C 𝔼 N d 𝔼 N C 𝔼 N P C Cgr d C d C Cgr P C
107 22 24 54 25 54 106 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P C Cgr d C d C Cgr P C
108 105 107 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C P Cgr C d d C Cgr P C
109 108 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C d d C Cgr P C
110 103 109 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d C Cgr P C
111 8 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C R Cgr C E
112 cgrcomlr N C 𝔼 N R 𝔼 N C 𝔼 N E 𝔼 N C R Cgr C E R C Cgr E C
113 22 54 23 54 86 112 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C R Cgr C E R C Cgr E C
114 cgrcom N R 𝔼 N C 𝔼 N E 𝔼 N C 𝔼 N R C Cgr E C E C Cgr R C
115 22 23 54 86 54 114 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R C Cgr E C E C Cgr R C
116 113 115 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C R Cgr C E E C Cgr R C
117 116 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C R Cgr C E E C Cgr R C
118 111 117 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E C Cgr R C
119 110 118 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d C Cgr P C E C Cgr R C
120 89 101 119 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn d D d E D Cgr3 P R Q d C Cgr P C E C Cgr R C
121 120 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d E E Btwn d D d E D Cgr3 P R Q d C Cgr P C E C Cgr R C
122 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d E d E
123 brofs2 N d 𝔼 N E 𝔼 N D 𝔼 N C 𝔼 N P 𝔼 N R 𝔼 N Q 𝔼 N C 𝔼 N d E D C OuterFiveSeg P R Q C E Btwn d D d E D Cgr3 P R Q d C Cgr P C E C Cgr R C
124 123 anbi1d N d 𝔼 N E 𝔼 N D 𝔼 N C 𝔼 N P 𝔼 N R 𝔼 N Q 𝔼 N C 𝔼 N d E D C OuterFiveSeg P R Q C d E E Btwn d D d E D Cgr3 P R Q d C Cgr P C E C Cgr R C d E
125 5segofs N d 𝔼 N E 𝔼 N D 𝔼 N C 𝔼 N P 𝔼 N R 𝔼 N Q 𝔼 N C 𝔼 N d E D C OuterFiveSeg P R Q C d E D C Cgr Q C
126 124 125 sylbird N d 𝔼 N E 𝔼 N D 𝔼 N C 𝔼 N P 𝔼 N R 𝔼 N Q 𝔼 N C 𝔼 N E Btwn d D d E D Cgr3 P R Q d C Cgr P C E C Cgr R C d E D C Cgr Q C
127 22 25 86 47 54 24 23 41 54 126 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N E Btwn d D d E D Cgr3 P R Q d C Cgr P C E C Cgr R C d E D C Cgr Q C
128 127 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d E E Btwn d D d E D Cgr3 P R Q d C Cgr P C E C Cgr R C d E D C Cgr Q C
129 121 122 128 mp2and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d E D C Cgr Q C
130 85 129 pm2.61dane N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P D C Cgr Q C