Database
REAL AND COMPLEX NUMBERS
Words over a set
Concatenations of words
ccatrn
Next ⟩
ccatidid
Metamath Proof Explorer
Ascii
Unicode
Theorem
ccatrn
Description:
The range of a concatenated word.
(Contributed by
Stefan O'Rear
, 15-Aug-2015)
Ref
Expression
Assertion
ccatrn
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
ran
S
++
T
=
ran
S
∪
ran
T
Proof
Step
Hyp
Ref
Expression
1
ccatvalfn
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
++
T
Fn
0
..^
S
+
T
2
lencl
⊢
S
∈
Word
B
→
S
∈
ℕ
0
3
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
4
2
3
eleqtrdi
⊢
S
∈
Word
B
→
S
∈
ℤ
≥
0
5
4
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
∈
ℤ
≥
0
6
2
nn0zd
⊢
S
∈
Word
B
→
S
∈
ℤ
7
6
uzidd
⊢
S
∈
Word
B
→
S
∈
ℤ
≥
S
8
lencl
⊢
T
∈
Word
B
→
T
∈
ℕ
0
9
uzaddcl
⊢
S
∈
ℤ
≥
S
∧
T
∈
ℕ
0
→
S
+
T
∈
ℤ
≥
S
10
7
8
9
syl2an
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
+
T
∈
ℤ
≥
S
11
elfzuzb
⊢
S
∈
0
…
S
+
T
↔
S
∈
ℤ
≥
0
∧
S
+
T
∈
ℤ
≥
S
12
5
10
11
sylanbrc
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
∈
0
…
S
+
T
13
fzosplit
⊢
S
∈
0
…
S
+
T
→
0
..^
S
+
T
=
0
..^
S
∪
S
..^
S
+
T
14
12
13
syl
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
0
..^
S
+
T
=
0
..^
S
∪
S
..^
S
+
T
15
14
eleq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
x
∈
0
..^
S
+
T
↔
x
∈
0
..^
S
∪
S
..^
S
+
T
16
elun
⊢
x
∈
0
..^
S
∪
S
..^
S
+
T
↔
x
∈
0
..^
S
∨
x
∈
S
..^
S
+
T
17
15
16
bitrdi
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
x
∈
0
..^
S
+
T
↔
x
∈
0
..^
S
∨
x
∈
S
..^
S
+
T
18
ccatval1
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
x
=
S
x
19
18
3expa
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
x
=
S
x
20
ssun1
⊢
ran
S
⊆
ran
S
∪
ran
T
21
wrdfn
⊢
S
∈
Word
B
→
S
Fn
0
..^
S
22
21
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
Fn
0
..^
S
23
fnfvelrn
⊢
S
Fn
0
..^
S
∧
x
∈
0
..^
S
→
S
x
∈
ran
S
24
22
23
sylan
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
→
S
x
∈
ran
S
25
20
24
sselid
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
→
S
x
∈
ran
S
∪
ran
T
26
19
25
eqeltrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
x
∈
ran
S
∪
ran
T
27
ccatval2
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
x
=
T
x
−
S
28
27
3expa
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
x
=
T
x
−
S
29
ssun2
⊢
ran
T
⊆
ran
S
∪
ran
T
30
wrdfn
⊢
T
∈
Word
B
→
T
Fn
0
..^
T
31
30
adantl
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
T
Fn
0
..^
T
32
elfzouz
⊢
x
∈
S
..^
S
+
T
→
x
∈
ℤ
≥
S
33
uznn0sub
⊢
x
∈
ℤ
≥
S
→
x
−
S
∈
ℕ
0
34
32
33
syl
⊢
x
∈
S
..^
S
+
T
→
x
−
S
∈
ℕ
0
35
34
3
eleqtrdi
⊢
x
∈
S
..^
S
+
T
→
x
−
S
∈
ℤ
≥
0
36
35
adantl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
x
−
S
∈
ℤ
≥
0
37
8
nn0zd
⊢
T
∈
Word
B
→
T
∈
ℤ
38
37
ad2antlr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
T
∈
ℤ
39
elfzolt2
⊢
x
∈
S
..^
S
+
T
→
x
<
S
+
T
40
39
adantl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
x
<
S
+
T
41
elfzoelz
⊢
x
∈
S
..^
S
+
T
→
x
∈
ℤ
42
41
zred
⊢
x
∈
S
..^
S
+
T
→
x
∈
ℝ
43
42
adantl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
x
∈
ℝ
44
2
nn0red
⊢
S
∈
Word
B
→
S
∈
ℝ
45
44
ad2antrr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
∈
ℝ
46
8
nn0red
⊢
T
∈
Word
B
→
T
∈
ℝ
47
46
ad2antlr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
T
∈
ℝ
48
43
45
47
ltsubadd2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
x
−
S
<
T
↔
x
<
S
+
T
49
40
48
mpbird
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
x
−
S
<
T
50
elfzo2
⊢
x
−
S
∈
0
..^
T
↔
x
−
S
∈
ℤ
≥
0
∧
T
∈
ℤ
∧
x
−
S
<
T
51
36
38
49
50
syl3anbrc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
x
−
S
∈
0
..^
T
52
fnfvelrn
⊢
T
Fn
0
..^
T
∧
x
−
S
∈
0
..^
T
→
T
x
−
S
∈
ran
T
53
31
51
52
syl2an2r
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
T
x
−
S
∈
ran
T
54
29
53
sselid
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
T
x
−
S
∈
ran
S
∪
ran
T
55
28
54
eqeltrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
x
∈
ran
S
∪
ran
T
56
26
55
jaodan
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
∨
x
∈
S
..^
S
+
T
→
S
++
T
x
∈
ran
S
∪
ran
T
57
56
ex
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
x
∈
0
..^
S
∨
x
∈
S
..^
S
+
T
→
S
++
T
x
∈
ran
S
∪
ran
T
58
17
57
sylbid
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
x
∈
0
..^
S
+
T
→
S
++
T
x
∈
ran
S
∪
ran
T
59
58
ralrimiv
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
∀
x
∈
0
..^
S
+
T
S
++
T
x
∈
ran
S
∪
ran
T
60
ffnfv
⊢
S
++
T
:
0
..^
S
+
T
⟶
ran
S
∪
ran
T
↔
S
++
T
Fn
0
..^
S
+
T
∧
∀
x
∈
0
..^
S
+
T
S
++
T
x
∈
ran
S
∪
ran
T
61
1
59
60
sylanbrc
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
++
T
:
0
..^
S
+
T
⟶
ran
S
∪
ran
T
62
61
frnd
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
ran
S
++
T
⊆
ran
S
∪
ran
T
63
fzoss2
⊢
S
+
T
∈
ℤ
≥
S
→
0
..^
S
⊆
0
..^
S
+
T
64
10
63
syl
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
0
..^
S
⊆
0
..^
S
+
T
65
64
sselda
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
→
x
∈
0
..^
S
+
T
66
fnfvelrn
⊢
S
++
T
Fn
0
..^
S
+
T
∧
x
∈
0
..^
S
+
T
→
S
++
T
x
∈
ran
S
++
T
67
1
65
66
syl2an2r
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
x
∈
ran
S
++
T
68
19
67
eqeltrrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
→
S
x
∈
ran
S
++
T
69
68
ralrimiva
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
∀
x
∈
0
..^
S
S
x
∈
ran
S
++
T
70
ffnfv
⊢
S
:
0
..^
S
⟶
ran
S
++
T
↔
S
Fn
0
..^
S
∧
∀
x
∈
0
..^
S
S
x
∈
ran
S
++
T
71
22
69
70
sylanbrc
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
:
0
..^
S
⟶
ran
S
++
T
72
71
frnd
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
ran
S
⊆
ran
S
++
T
73
ccatval3
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
S
++
T
x
+
S
=
T
x
74
73
3expa
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
S
++
T
x
+
S
=
T
x
75
elfzouz
⊢
x
∈
0
..^
T
→
x
∈
ℤ
≥
0
76
2
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
∈
ℕ
0
77
uzaddcl
⊢
x
∈
ℤ
≥
0
∧
S
∈
ℕ
0
→
x
+
S
∈
ℤ
≥
0
78
75
76
77
syl2anr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
x
+
S
∈
ℤ
≥
0
79
nn0addcl
⊢
S
∈
ℕ
0
∧
T
∈
ℕ
0
→
S
+
T
∈
ℕ
0
80
2
8
79
syl2an
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
+
T
∈
ℕ
0
81
80
nn0zd
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
+
T
∈
ℤ
82
81
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
S
+
T
∈
ℤ
83
elfzonn0
⊢
x
∈
0
..^
T
→
x
∈
ℕ
0
84
83
nn0cnd
⊢
x
∈
0
..^
T
→
x
∈
ℂ
85
2
nn0cnd
⊢
S
∈
Word
B
→
S
∈
ℂ
86
85
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
∈
ℂ
87
addcom
⊢
x
∈
ℂ
∧
S
∈
ℂ
→
x
+
S
=
S
+
x
88
84
86
87
syl2anr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
x
+
S
=
S
+
x
89
83
nn0red
⊢
x
∈
0
..^
T
→
x
∈
ℝ
90
89
adantl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
x
∈
ℝ
91
46
ad2antlr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
T
∈
ℝ
92
44
ad2antrr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
S
∈
ℝ
93
elfzolt2
⊢
x
∈
0
..^
T
→
x
<
T
94
93
adantl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
x
<
T
95
90
91
92
94
ltadd2dd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
S
+
x
<
S
+
T
96
88
95
eqbrtrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
x
+
S
<
S
+
T
97
elfzo2
⊢
x
+
S
∈
0
..^
S
+
T
↔
x
+
S
∈
ℤ
≥
0
∧
S
+
T
∈
ℤ
∧
x
+
S
<
S
+
T
98
78
82
96
97
syl3anbrc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
x
+
S
∈
0
..^
S
+
T
99
fnfvelrn
⊢
S
++
T
Fn
0
..^
S
+
T
∧
x
+
S
∈
0
..^
S
+
T
→
S
++
T
x
+
S
∈
ran
S
++
T
100
1
98
99
syl2an2r
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
S
++
T
x
+
S
∈
ran
S
++
T
101
74
100
eqeltrrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
T
→
T
x
∈
ran
S
++
T
102
101
ralrimiva
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
∀
x
∈
0
..^
T
T
x
∈
ran
S
++
T
103
ffnfv
⊢
T
:
0
..^
T
⟶
ran
S
++
T
↔
T
Fn
0
..^
T
∧
∀
x
∈
0
..^
T
T
x
∈
ran
S
++
T
104
31
102
103
sylanbrc
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
T
:
0
..^
T
⟶
ran
S
++
T
105
104
frnd
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
ran
T
⊆
ran
S
++
T
106
72
105
unssd
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
ran
S
∪
ran
T
⊆
ran
S
++
T
107
62
106
eqssd
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
ran
S
++
T
=
ran
S
∪
ran
T