Metamath Proof Explorer


Theorem cdlemc5

Description: Lemma for cdlemc . (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l ˙=K
cdlemc3.j ˙=joinK
cdlemc3.m ˙=meetK
cdlemc3.a A=AtomsK
cdlemc3.h H=LHypK
cdlemc3.t T=LTrnKW
cdlemc3.r R=trLKW
Assertion cdlemc5 KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQ=Q˙RF˙FP˙P˙Q˙W

Proof

Step Hyp Ref Expression
1 cdlemc3.l ˙=K
2 cdlemc3.j ˙=joinK
3 cdlemc3.m ˙=meetK
4 cdlemc3.a A=AtomsK
5 cdlemc3.h H=LHypK
6 cdlemc3.t T=LTrnKW
7 cdlemc3.r R=trLKW
8 simp1l KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPKHL
9 simp23l KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQA
10 simp1 KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPKHLWH
11 simp21 KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFT
12 1 4 5 6 ltrnat KHLWHFTQAFQA
13 10 11 9 12 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQA
14 1 2 4 hlatlej2 KHLQAFQAFQ˙Q˙FQ
15 8 9 13 14 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQ˙Q˙FQ
16 simp23 KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQA¬Q˙W
17 1 2 4 5 6 7 trljat1 KHLWHFTQA¬Q˙WQ˙RF=Q˙FQ
18 10 11 16 17 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQ˙RF=Q˙FQ
19 15 18 breqtrrd KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQ˙Q˙RF
20 simp22 KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPPA¬P˙W
21 1 2 3 4 5 6 cdlemc2 KHLWHFTPA¬P˙WQA¬Q˙WFQ˙FP˙P˙Q˙W
22 10 11 20 16 21 syl112anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQ˙FP˙P˙Q˙W
23 8 hllatd KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPKLat
24 eqid BaseK=BaseK
25 24 4 atbase QAQBaseK
26 9 25 syl KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQBaseK
27 24 5 6 ltrncl KHLWHFTQBaseKFQBaseK
28 10 11 26 27 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQBaseK
29 24 5 6 7 trlcl KHLWHFTRFBaseK
30 10 11 29 syl2anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPRFBaseK
31 24 2 latjcl KLatQBaseKRFBaseKQ˙RFBaseK
32 23 26 30 31 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQ˙RFBaseK
33 simp22l KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPPA
34 24 4 atbase PAPBaseK
35 33 34 syl KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPPBaseK
36 24 5 6 ltrncl KHLWHFTPBaseKFPBaseK
37 10 11 35 36 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFPBaseK
38 24 2 4 hlatjcl KHLPAQAP˙QBaseK
39 8 33 9 38 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPP˙QBaseK
40 simp1r KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPWH
41 24 5 lhpbase WHWBaseK
42 40 41 syl KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPWBaseK
43 24 3 latmcl KLatP˙QBaseKWBaseKP˙Q˙WBaseK
44 23 39 42 43 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPP˙Q˙WBaseK
45 24 2 latjcl KLatFPBaseKP˙Q˙WBaseKFP˙P˙Q˙WBaseK
46 23 37 44 45 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFP˙P˙Q˙WBaseK
47 24 1 3 latlem12 KLatFQBaseKQ˙RFBaseKFP˙P˙Q˙WBaseKFQ˙Q˙RFFQ˙FP˙P˙Q˙WFQ˙Q˙RF˙FP˙P˙Q˙W
48 23 28 32 46 47 syl13anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQ˙Q˙RFFQ˙FP˙P˙Q˙WFQ˙Q˙RF˙FP˙P˙Q˙W
49 19 22 48 mpbi2and KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQ˙Q˙RF˙FP˙P˙Q˙W
50 hlatl KHLKAtLat
51 8 50 syl KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPKAtLat
52 simp3r KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFPP
53 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
54 10 20 11 52 53 syl112anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPRFA
55 1 5 6 7 trlle KHLWHFTRF˙W
56 10 11 55 syl2anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPRF˙W
57 simp23r KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPP¬Q˙W
58 nbrne2 RF˙W¬Q˙WRFQ
59 58 necomd RF˙W¬Q˙WQRF
60 56 57 59 syl2anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQRF
61 eqid LLinesK=LLinesK
62 2 4 61 llni2 KHLQARFAQRFQ˙RFLLinesK
63 8 9 54 60 62 syl31anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQ˙RFLLinesK
64 1 4 5 6 ltrnat KHLWHFTPAFPA
65 10 11 33 64 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFPA
66 1 2 4 hlatlej1 KHLPAFPAP˙P˙FP
67 8 33 65 66 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPP˙P˙FP
68 simp3l KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPP¬Q˙P˙FP
69 nbrne2 P˙P˙FP¬Q˙P˙FPPQ
70 67 68 69 syl2anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPPQ
71 1 2 3 4 5 lhpat KHLWHPA¬P˙WQAPQP˙Q˙WA
72 10 20 9 70 71 syl112anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPP˙Q˙WA
73 24 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
74 23 39 42 73 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPP˙Q˙W˙W
75 1 4 5 6 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
76 75 simprd KHLWHFTPA¬P˙W¬FP˙W
77 10 11 20 76 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPP¬FP˙W
78 nbrne2 P˙Q˙W˙W¬FP˙WP˙Q˙WFP
79 78 necomd P˙Q˙W˙W¬FP˙WFPP˙Q˙W
80 74 77 79 syl2anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFPP˙Q˙W
81 2 4 61 llni2 KHLFPAP˙Q˙WAFPP˙Q˙WFP˙P˙Q˙WLLinesK
82 8 65 72 80 81 syl31anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFP˙P˙Q˙WLLinesK
83 1 2 3 4 5 6 7 cdlemc4 KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPQ˙RFFP˙P˙Q˙W
84 83 3adant3r KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQ˙RFFP˙P˙Q˙W
85 24 3 latmcl KLatQ˙RFBaseKFP˙P˙Q˙WBaseKQ˙RF˙FP˙P˙Q˙WBaseK
86 23 32 46 85 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQ˙RF˙FP˙P˙Q˙WBaseK
87 eqid 0.K=0.K
88 24 1 87 4 atlen0 KAtLatQ˙RF˙FP˙P˙Q˙WBaseKFQAFQ˙Q˙RF˙FP˙P˙Q˙WQ˙RF˙FP˙P˙Q˙W0.K
89 51 86 13 49 88 syl31anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQ˙RF˙FP˙P˙Q˙W0.K
90 3 87 4 61 2llnmat KHLQ˙RFLLinesKFP˙P˙Q˙WLLinesKQ˙RFFP˙P˙Q˙WQ˙RF˙FP˙P˙Q˙W0.KQ˙RF˙FP˙P˙Q˙WA
91 8 63 82 84 89 90 syl32anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPQ˙RF˙FP˙P˙Q˙WA
92 1 4 atcmp KAtLatFQAQ˙RF˙FP˙P˙Q˙WAFQ˙Q˙RF˙FP˙P˙Q˙WFQ=Q˙RF˙FP˙P˙Q˙W
93 51 13 91 92 syl3anc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQ˙Q˙RF˙FP˙P˙Q˙WFQ=Q˙RF˙FP˙P˙Q˙W
94 49 93 mpbid KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFPPFQ=Q˙RF˙FP˙P˙Q˙W