Metamath Proof Explorer


Theorem chpchtlim

Description: The psi and theta functions are asymptotic to each other, so is sufficient to prove either theta ( x ) / x ~>r 1 or psi ( x ) / x ~>r 1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion chpchtlim x2+∞ψxθx1

Proof

Step Hyp Ref Expression
1 1red 1
2 1red x2+∞1
3 2re 2
4 elicopnf 2x2+∞x2x
5 3 4 ax-mp x2+∞x2x
6 5 simplbi x2+∞x
7 6 adantl x2+∞x
8 0red x2+∞0
9 3 a1i x2+∞2
10 2pos 0<2
11 10 a1i x2+∞0<2
12 5 simprbi x2+∞2x
13 8 9 6 11 12 ltletrd x2+∞0<x
14 6 13 elrpd x2+∞x+
15 14 adantl x2+∞x+
16 15 rpge0d x2+∞0x
17 7 16 resqrtcld x2+∞x
18 15 relogcld x2+∞logx
19 17 18 remulcld x2+∞xlogx
20 12 adantl x2+∞2x
21 chtrpcl x2xθx+
22 7 20 21 syl2anc x2+∞θx+
23 19 22 rerpdivcld x2+∞xlogxθx
24 6 ssriv 2+∞
25 1 recnd 1
26 rlimconst 2+∞1x2+∞11
27 24 25 26 sylancr x2+∞11
28 ovexd 2+∞V
29 7 22 rerpdivcld x2+∞xθx
30 ovexd x2+∞xlogxxV
31 eqidd x2+∞xθx=x2+∞xθx
32 7 recnd x2+∞x
33 cxpsqrt xx12=x
34 32 33 syl x2+∞x12=x
35 34 oveq2d x2+∞logxx12=logxx
36 18 recnd x2+∞logx
37 15 rpsqrtcld x2+∞x+
38 37 rpcnne0d x2+∞xx0
39 divcan5 logxxx0xx0xlogxxx=logxx
40 36 38 38 39 syl3anc x2+∞xlogxxx=logxx
41 remsqsqrt x0xxx=x
42 7 16 41 syl2anc x2+∞xx=x
43 42 oveq2d x2+∞xlogxxx=xlogxx
44 35 40 43 3eqtr2d x2+∞logxx12=xlogxx
45 44 mpteq2dva x2+∞logxx12=x2+∞xlogxx
46 28 29 30 31 45 offval2 x2+∞xθx×fx2+∞logxx12=x2+∞xθxxlogxx
47 15 rpne0d x2+∞x0
48 22 rpcnne0d x2+∞θxθx0
49 19 recnd x2+∞xlogx
50 dmdcan xx0θxθx0xlogxxθxxlogxx=xlogxθx
51 32 47 48 49 50 syl211anc x2+∞xθxxlogxx=xlogxθx
52 51 mpteq2dva x2+∞xθxxlogxx=x2+∞xlogxθx
53 46 52 eqtrd x2+∞xθx×fx2+∞logxx12=x2+∞xlogxθx
54 chto1lb x2+∞xθx𝑂1
55 14 ssriv 2+∞+
56 55 a1i 2+∞+
57 1rp 1+
58 rphalfcl 1+12+
59 57 58 ax-mp 12+
60 cxploglim 12+x+logxx120
61 59 60 ax-mp x+logxx120
62 61 a1i x+logxx120
63 56 62 rlimres2 x2+∞logxx120
64 o1rlimmul x2+∞xθx𝑂1x2+∞logxx120x2+∞xθx×fx2+∞logxx120
65 54 63 64 sylancr x2+∞xθx×fx2+∞logxx120
66 53 65 eqbrtrrd x2+∞xlogxθx0
67 2 23 27 66 rlimadd x2+∞1+xlogxθx1+0
68 1p0e1 1+0=1
69 67 68 breqtrdi x2+∞1+xlogxθx1
70 1re 1
71 readdcl 1xlogxθx1+xlogxθx
72 70 23 71 sylancr x2+∞1+xlogxθx
73 chpcl xψx
74 7 73 syl x2+∞ψx
75 74 22 rerpdivcld x2+∞ψxθx
76 chtcl xθx
77 7 76 syl x2+∞θx
78 77 19 readdcld x2+∞θx+xlogx
79 3 a1i x2+∞2
80 1le2 12
81 80 a1i x2+∞12
82 2 79 7 81 20 letrd x2+∞1x
83 chpub x1xψxθx+xlogx
84 7 82 83 syl2anc x2+∞ψxθx+xlogx
85 74 78 22 84 lediv1dd x2+∞ψxθxθx+xlogxθx
86 22 rpcnd x2+∞θx
87 divdir θxxlogxθxθx0θx+xlogxθx=θxθx+xlogxθx
88 86 49 48 87 syl3anc x2+∞θx+xlogxθx=θxθx+xlogxθx
89 divid θxθx0θxθx=1
90 48 89 syl x2+∞θxθx=1
91 90 oveq1d x2+∞θxθx+xlogxθx=1+xlogxθx
92 88 91 eqtrd x2+∞θx+xlogxθx=1+xlogxθx
93 85 92 breqtrd x2+∞ψxθx1+xlogxθx
94 93 adantrr x2+∞1xψxθx1+xlogxθx
95 86 mullidd x2+∞1θx=θx
96 chtlepsi xθxψx
97 7 96 syl x2+∞θxψx
98 95 97 eqbrtrd x2+∞1θxψx
99 2 74 22 lemuldivd x2+∞1θxψx1ψxθx
100 98 99 mpbid x2+∞1ψxθx
101 100 adantrr x2+∞1x1ψxθx
102 1 1 69 72 75 94 101 rlimsqz2 x2+∞ψxθx1
103 102 mptru x2+∞ψxθx1