| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chscl.1 |
|
| 2 |
|
chscl.2 |
|
| 3 |
|
chscl.3 |
|
| 4 |
|
chscl.4 |
|
| 5 |
|
chscl.5 |
|
| 6 |
|
chscl.6 |
|
| 7 |
1 2 3 4 5 6
|
chscllem1 |
|
| 8 |
|
chss |
|
| 9 |
1 8
|
syl |
|
| 10 |
7 9
|
fssd |
|
| 11 |
|
hlimcaui |
|
| 12 |
5 11
|
syl |
|
| 13 |
|
hcaucvg |
|
| 14 |
12 13
|
sylan |
|
| 15 |
|
eluznn |
|
| 16 |
15
|
adantll |
|
| 17 |
|
chsh |
|
| 18 |
1 17
|
syl |
|
| 19 |
|
chsh |
|
| 20 |
2 19
|
syl |
|
| 21 |
|
shscl |
|
| 22 |
18 20 21
|
syl2anc |
|
| 23 |
|
shss |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
adantr |
|
| 26 |
4
|
ffvelcdmda |
|
| 27 |
25 26
|
sseldd |
|
| 28 |
27
|
adantrr |
|
| 29 |
4 24
|
fssd |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simprr |
|
| 32 |
30 31
|
ffvelcdmd |
|
| 33 |
|
hvsubcl |
|
| 34 |
28 32 33
|
syl2anc |
|
| 35 |
9
|
adantr |
|
| 36 |
7
|
ffvelcdmda |
|
| 37 |
35 36
|
sseldd |
|
| 38 |
37
|
adantrr |
|
| 39 |
9
|
adantr |
|
| 40 |
7
|
adantr |
|
| 41 |
40 31
|
ffvelcdmd |
|
| 42 |
39 41
|
sseldd |
|
| 43 |
|
hvsubcl |
|
| 44 |
38 42 43
|
syl2anc |
|
| 45 |
|
hvsubcl |
|
| 46 |
34 44 45
|
syl2anc |
|
| 47 |
|
normcl |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
sqge0d |
|
| 50 |
|
normcl |
|
| 51 |
44 50
|
syl |
|
| 52 |
51
|
resqcld |
|
| 53 |
48
|
resqcld |
|
| 54 |
52 53
|
addge01d |
|
| 55 |
49 54
|
mpbid |
|
| 56 |
18
|
adantr |
|
| 57 |
36
|
adantrr |
|
| 58 |
|
shsubcl |
|
| 59 |
56 57 41 58
|
syl3anc |
|
| 60 |
|
hvsubsub4 |
|
| 61 |
28 32 38 42 60
|
syl22anc |
|
| 62 |
|
ocsh |
|
| 63 |
39 62
|
syl |
|
| 64 |
|
2fveq3 |
|
| 65 |
|
fvex |
|
| 66 |
64 6 65
|
fvmpt |
|
| 67 |
66
|
eqcomd |
|
| 68 |
67
|
adantl |
|
| 69 |
1
|
adantr |
|
| 70 |
9 62
|
syl |
|
| 71 |
|
shless |
|
| 72 |
20 70 18 3 71
|
syl31anc |
|
| 73 |
|
shscom |
|
| 74 |
18 20 73
|
syl2anc |
|
| 75 |
|
shscom |
|
| 76 |
18 70 75
|
syl2anc |
|
| 77 |
72 74 76
|
3sstr4d |
|
| 78 |
77
|
adantr |
|
| 79 |
78 26
|
sseldd |
|
| 80 |
|
pjpreeq |
|
| 81 |
69 79 80
|
syl2anc |
|
| 82 |
68 81
|
mpbid |
|
| 83 |
82
|
simprd |
|
| 84 |
27
|
adantr |
|
| 85 |
37
|
adantr |
|
| 86 |
|
shss |
|
| 87 |
70 86
|
syl |
|
| 88 |
87
|
adantr |
|
| 89 |
88
|
sselda |
|
| 90 |
|
hvsubadd |
|
| 91 |
84 85 89 90
|
syl3anc |
|
| 92 |
|
eqcom |
|
| 93 |
|
eqcom |
|
| 94 |
91 92 93
|
3bitr4g |
|
| 95 |
94
|
rexbidva |
|
| 96 |
83 95
|
mpbird |
|
| 97 |
|
risset |
|
| 98 |
96 97
|
sylibr |
|
| 99 |
98
|
adantrr |
|
| 100 |
|
eleq1w |
|
| 101 |
100
|
anbi2d |
|
| 102 |
|
fveq2 |
|
| 103 |
|
fveq2 |
|
| 104 |
102 103
|
oveq12d |
|
| 105 |
104
|
eleq1d |
|
| 106 |
101 105
|
imbi12d |
|
| 107 |
106 98
|
chvarvv |
|
| 108 |
107
|
adantrl |
|
| 109 |
|
shsubcl |
|
| 110 |
63 99 108 109
|
syl3anc |
|
| 111 |
61 110
|
eqeltrd |
|
| 112 |
|
shocorth |
|
| 113 |
56 112
|
syl |
|
| 114 |
59 111 113
|
mp2and |
|
| 115 |
|
normpyth |
|
| 116 |
44 46 115
|
syl2anc |
|
| 117 |
114 116
|
mpd |
|
| 118 |
|
hvpncan3 |
|
| 119 |
44 34 118
|
syl2anc |
|
| 120 |
119
|
fveq2d |
|
| 121 |
120
|
oveq1d |
|
| 122 |
117 121
|
eqtr3d |
|
| 123 |
55 122
|
breqtrd |
|
| 124 |
|
normcl |
|
| 125 |
34 124
|
syl |
|
| 126 |
|
normge0 |
|
| 127 |
44 126
|
syl |
|
| 128 |
|
normge0 |
|
| 129 |
34 128
|
syl |
|
| 130 |
51 125 127 129
|
le2sqd |
|
| 131 |
123 130
|
mpbird |
|
| 132 |
131
|
adantlr |
|
| 133 |
51
|
adantlr |
|
| 134 |
125
|
adantlr |
|
| 135 |
|
rpre |
|
| 136 |
135
|
ad2antlr |
|
| 137 |
|
lelttr |
|
| 138 |
133 134 136 137
|
syl3anc |
|
| 139 |
132 138
|
mpand |
|
| 140 |
139
|
anassrs |
|
| 141 |
16 140
|
syldan |
|
| 142 |
141
|
ralimdva |
|
| 143 |
142
|
reximdva |
|
| 144 |
14 143
|
mpd |
|
| 145 |
144
|
ralrimiva |
|
| 146 |
|
hcau |
|
| 147 |
10 145 146
|
sylanbrc |
|
| 148 |
|
ax-hcompl |
|
| 149 |
|
hlimf |
|
| 150 |
|
ffn |
|
| 151 |
149 150
|
ax-mp |
|
| 152 |
|
fnbr |
|
| 153 |
151 152
|
mpan |
|
| 154 |
153
|
rexlimivw |
|
| 155 |
147 148 154
|
3syl |
|