Metamath Proof Explorer


Theorem chtppilim

Description: The theta function is asymptotic to ppi ( x ) log ( x ) , so it is sufficient to prove theta ( x ) / x ~>r 1 to establish the PNT. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtppilim x2+∞θxπ_xlogx1

Proof

Step Hyp Ref Expression
1 halfre 12
2 1re 1
3 rpre y+y
4 resubcl 1y1y
5 2 3 4 sylancr y+1y
6 ifcl 121yif1y12121y
7 1 5 6 sylancr y+if1y12121y
8 0red y+0
9 1 a1i y+12
10 halfgt0 0<12
11 10 a1i y+0<12
12 max2 1y1212if1y12121y
13 5 1 12 sylancl y+12if1y12121y
14 8 9 7 11 13 ltletrd y+0<if1y12121y
15 7 14 elrpd y+if1y12121y+
16 15 rpsqrtcld y+if1y12121y+
17 halflt1 12<1
18 ltsubrp 1y+1y<1
19 2 18 mpan y+1y<1
20 breq1 12=if1y12121y12<1if1y12121y<1
21 breq1 1y=if1y12121y1y<1if1y12121y<1
22 20 21 ifboth 12<11y<1if1y12121y<1
23 17 19 22 sylancr y+if1y12121y<1
24 15 rpge0d y+0if1y12121y
25 2 a1i y+1
26 0le1 01
27 26 a1i y+01
28 7 24 25 27 sqrtltd y+if1y12121y<1if1y12121y<1
29 23 28 mpbid y+if1y12121y<1
30 sqrt1 1=1
31 29 30 breqtrdi y+if1y12121y<1
32 16 31 chtppilimlem2 y+zx2+∞zxif1y12121y2π_xlogx<θx
33 5 adantr y+x2+∞1y
34 max1 1y121yif1y12121y
35 33 1 34 sylancl y+x2+∞1yif1y12121y
36 7 adantr y+x2+∞if1y12121y
37 2re 2
38 elicopnf 2x2+∞x2x
39 37 38 ax-mp x2+∞x2x
40 39 simplbi x2+∞x
41 chtcl xθx
42 40 41 syl x2+∞θx
43 ppinncl x2xπ_x
44 39 43 sylbi x2+∞π_x
45 44 nnrpd x2+∞π_x+
46 2 a1i x2+∞1
47 37 a1i x2+∞2
48 1lt2 1<2
49 48 a1i x2+∞1<2
50 39 simprbi x2+∞2x
51 46 47 40 49 50 ltletrd x2+∞1<x
52 40 51 rplogcld x2+∞logx+
53 45 52 rpmulcld x2+∞π_xlogx+
54 42 53 rerpdivcld x2+∞θxπ_xlogx
55 54 adantl y+x2+∞θxπ_xlogx
56 lelttr 1yif1y12121yθxπ_xlogx1yif1y12121yif1y12121y<θxπ_xlogx1y<θxπ_xlogx
57 33 36 55 56 syl3anc y+x2+∞1yif1y12121yif1y12121y<θxπ_xlogx1y<θxπ_xlogx
58 35 57 mpand y+x2+∞if1y12121y<θxπ_xlogx1y<θxπ_xlogx
59 7 recnd y+if1y12121y
60 59 sqsqrtd y+if1y12121y2=if1y12121y
61 60 adantr y+x2+∞if1y12121y2=if1y12121y
62 61 oveq1d y+x2+∞if1y12121y2π_xlogx=if1y12121yπ_xlogx
63 62 breq1d y+x2+∞if1y12121y2π_xlogx<θxif1y12121yπ_xlogx<θx
64 42 adantl y+x2+∞θx
65 53 rpregt0d x2+∞π_xlogx0<π_xlogx
66 65 adantl y+x2+∞π_xlogx0<π_xlogx
67 ltmuldiv if1y12121yθxπ_xlogx0<π_xlogxif1y12121yπ_xlogx<θxif1y12121y<θxπ_xlogx
68 36 64 66 67 syl3anc y+x2+∞if1y12121yπ_xlogx<θxif1y12121y<θxπ_xlogx
69 63 68 bitrd y+x2+∞if1y12121y2π_xlogx<θxif1y12121y<θxπ_xlogx
70 0red x2+∞0
71 2pos 0<2
72 71 a1i x2+∞0<2
73 70 47 40 72 50 ltletrd x2+∞0<x
74 40 73 elrpd x2+∞x+
75 chtleppi x+θxπ_xlogx
76 74 75 syl x2+∞θxπ_xlogx
77 53 rpcnd x2+∞π_xlogx
78 77 mulridd x2+∞π_xlogx1=π_xlogx
79 76 78 breqtrrd x2+∞θxπ_xlogx1
80 42 46 53 ledivmuld x2+∞θxπ_xlogx1θxπ_xlogx1
81 79 80 mpbird x2+∞θxπ_xlogx1
82 54 46 81 abssuble0d x2+∞θxπ_xlogx1=1θxπ_xlogx
83 82 breq1d x2+∞θxπ_xlogx1<y1θxπ_xlogx<y
84 83 adantl y+x2+∞θxπ_xlogx1<y1θxπ_xlogx<y
85 2 a1i y+x2+∞1
86 3 adantr y+x2+∞y
87 ltsub23 1θxπ_xlogxy1θxπ_xlogx<y1y<θxπ_xlogx
88 85 55 86 87 syl3anc y+x2+∞1θxπ_xlogx<y1y<θxπ_xlogx
89 84 88 bitrd y+x2+∞θxπ_xlogx1<y1y<θxπ_xlogx
90 58 69 89 3imtr4d y+x2+∞if1y12121y2π_xlogx<θxθxπ_xlogx1<y
91 90 imim2d y+x2+∞zxif1y12121y2π_xlogx<θxzxθxπ_xlogx1<y
92 91 ralimdva y+x2+∞zxif1y12121y2π_xlogx<θxx2+∞zxθxπ_xlogx1<y
93 92 reximdv y+zx2+∞zxif1y12121y2π_xlogx<θxzx2+∞zxθxπ_xlogx1<y
94 32 93 mpd y+zx2+∞zxθxπ_xlogx1<y
95 94 rgen y+zx2+∞zxθxπ_xlogx1<y
96 54 recnd x2+∞θxπ_xlogx
97 96 adantl x2+∞θxπ_xlogx
98 97 ralrimiva x2+∞θxπ_xlogx
99 40 ssriv 2+∞
100 99 a1i 2+∞
101 1cnd 1
102 98 100 101 rlim2 x2+∞θxπ_xlogx1y+zx2+∞zxθxπ_xlogx1<y
103 95 102 mpbiri x2+∞θxπ_xlogx1
104 103 mptru x2+∞θxπ_xlogx1