Metamath Proof Explorer


Theorem cnfcom3lem

Description: Lemma for cnfcom3 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 4-Jul-2019)

Ref Expression
Hypotheses cnfcom.s S=domωCNFA
cnfcom.a φAOn
cnfcom.b φBω𝑜A
cnfcom.f F=ωCNFA-1B
cnfcom.g G=OrdIsoEFsupp
cnfcom.h H=seqωkV,zVM+𝑜z
cnfcom.t T=seqωkV,fVK
cnfcom.m M=ω𝑜Gk𝑜FGk
cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
cnfcom.w W=GdomG
cnfcom3.1 φωB
Assertion cnfcom3lem φWOn1𝑜

Proof

Step Hyp Ref Expression
1 cnfcom.s S=domωCNFA
2 cnfcom.a φAOn
3 cnfcom.b φBω𝑜A
4 cnfcom.f F=ωCNFA-1B
5 cnfcom.g G=OrdIsoEFsupp
6 cnfcom.h H=seqωkV,zVM+𝑜z
7 cnfcom.t T=seqωkV,fVK
8 cnfcom.m M=ω𝑜Gk𝑜FGk
9 cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
10 cnfcom.w W=GdomG
11 cnfcom3.1 φωB
12 suppssdm FsuppdomF
13 omelon ωOn
14 13 a1i φωOn
15 1 14 2 cantnff1o φωCNFA:S1-1 ontoω𝑜A
16 f1ocnv ωCNFA:S1-1 ontoω𝑜AωCNFA-1:ω𝑜A1-1 ontoS
17 f1of ωCNFA-1:ω𝑜A1-1 ontoSωCNFA-1:ω𝑜AS
18 15 16 17 3syl φωCNFA-1:ω𝑜AS
19 18 3 ffvelcdmd φωCNFA-1BS
20 4 19 eqeltrid φFS
21 1 14 2 cantnfs φFSF:AωfinSuppF
22 20 21 mpbid φF:AωfinSuppF
23 22 simpld φF:Aω
24 12 23 fssdm φFsuppA
25 ovex FsuppV
26 5 oion FsuppVdomGOn
27 25 26 ax-mp domGOn
28 27 elexi domGV
29 28 uniex domGV
30 29 sucid domGsucdomG
31 peano1 ω
32 31 a1i φω
33 11 32 sseldd φB
34 1 2 3 4 5 6 7 8 9 10 33 cnfcom2lem φdomG=sucdomG
35 30 34 eleqtrrid φdomGdomG
36 5 oif G:domGFsupp
37 36 ffvelcdmi domGdomGGdomGsuppF
38 35 37 syl φGdomGsuppF
39 24 38 sseldd φGdomGA
40 onelon AOnGdomGAGdomGOn
41 2 39 40 syl2anc φGdomGOn
42 10 41 eqeltrid φWOn
43 oecl ωOnAOnω𝑜AOn
44 13 2 43 sylancr φω𝑜AOn
45 onelon ω𝑜AOnBω𝑜ABOn
46 44 3 45 syl2anc φBOn
47 ontri1 ωOnBOnωB¬Bω
48 13 46 47 sylancr φωB¬Bω
49 11 48 mpbid φ¬Bω
50 4 fveq2i ωCNFAF=ωCNFAωCNFA-1B
51 f1ocnvfv2 ωCNFA:S1-1 ontoω𝑜ABω𝑜AωCNFAωCNFA-1B=B
52 15 3 51 syl2anc φωCNFAωCNFA-1B=B
53 50 52 eqtrid φωCNFAF=B
54 53 adantr φW=ωCNFAF=B
55 13 a1i φW=ωOn
56 2 adantr φW=AOn
57 20 adantr φW=FS
58 31 a1i φW=ω
59 1on 1𝑜On
60 59 a1i φW=1𝑜On
61 ovexd φFsuppV
62 1 14 2 5 20 cantnfcl φEWesuppFdomGω
63 62 simpld φEWesuppF
64 5 oiiso FsuppVEWesuppFGIsomE,EdomGFsupp
65 61 63 64 syl2anc φGIsomE,EdomGFsupp
66 65 ad2antrr φW=xsuppFGIsomE,EdomGFsupp
67 isof1o GIsomE,EdomGFsuppG:domG1-1 ontoFsupp
68 66 67 syl φW=xsuppFG:domG1-1 ontoFsupp
69 f1ocnv G:domG1-1 ontoFsuppG-1:Fsupp1-1 ontodomG
70 f1of G-1:Fsupp1-1 ontodomGG-1:FsuppdomG
71 68 69 70 3syl φW=xsuppFG-1:FsuppdomG
72 ffvelcdm G-1:FsuppdomGxsuppFG-1xdomG
73 71 72 sylancom φW=xsuppFG-1xdomG
74 elssuni G-1xdomGG-1xdomG
75 73 74 syl φW=xsuppFG-1xdomG
76 onelon domGOnG-1xdomGG-1xOn
77 27 73 76 sylancr φW=xsuppFG-1xOn
78 onuni domGOndomGOn
79 27 78 ax-mp domGOn
80 ontri1 G-1xOndomGOnG-1xdomG¬domGG-1x
81 77 79 80 sylancl φW=xsuppFG-1xdomG¬domGG-1x
82 75 81 mpbid φW=xsuppF¬domGG-1x
83 35 ad2antrr φW=xsuppFdomGdomG
84 isorel GIsomE,EdomGFsuppdomGdomGG-1xdomGdomGEG-1xGdomGEGG-1x
85 66 83 73 84 syl12anc φW=xsuppFdomGEG-1xGdomGEGG-1x
86 fvex G-1xV
87 86 epeli domGEG-1xdomGG-1x
88 10 breq1i WEGG-1xGdomGEGG-1x
89 fvex GG-1xV
90 89 epeli WEGG-1xWGG-1x
91 88 90 bitr3i GdomGEGG-1xWGG-1x
92 85 87 91 3bitr3g φW=xsuppFdomGG-1xWGG-1x
93 simplr φW=xsuppFW=
94 f1ocnvfv2 G:domG1-1 ontoFsuppxsuppFGG-1x=x
95 68 94 sylancom φW=xsuppFGG-1x=x
96 93 95 eleq12d φW=xsuppFWGG-1xx
97 92 96 bitrd φW=xsuppFdomGG-1xx
98 82 97 mtbid φW=xsuppF¬x
99 onss AOnAOn
100 2 99 syl φAOn
101 24 100 sstrd φFsuppOn
102 101 adantr φW=FsuppOn
103 102 sselda φW=xsuppFxOn
104 on0eqel xOnx=x
105 103 104 syl φW=xsuppFx=x
106 105 ord φW=xsuppF¬x=x
107 98 106 mt3d φW=xsuppFx=
108 el1o x1𝑜x=
109 107 108 sylibr φW=xsuppFx1𝑜
110 109 ex φW=xsuppFx1𝑜
111 110 ssrdv φW=Fsupp1𝑜
112 1 55 56 57 58 60 111 cantnflt2 φW=ωCNFAFω𝑜1𝑜
113 oe1 ωOnω𝑜1𝑜=ω
114 13 113 ax-mp ω𝑜1𝑜=ω
115 112 114 eleqtrdi φW=ωCNFAFω
116 54 115 eqeltrrd φW=Bω
117 116 ex φW=Bω
118 117 necon3bd φ¬BωW
119 49 118 mpd φW
120 dif1o WOn1𝑜WOnW
121 42 119 120 sylanbrc φWOn1𝑜