| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s |  | 
						
							| 2 |  | cnfcom.a |  | 
						
							| 3 |  | cnfcom.b |  | 
						
							| 4 |  | cnfcom.f |  | 
						
							| 5 |  | cnfcom.g |  | 
						
							| 6 |  | cnfcom.h |  | 
						
							| 7 |  | cnfcom.t |  | 
						
							| 8 |  | cnfcom.m |  | 
						
							| 9 |  | cnfcom.k |  | 
						
							| 10 |  | cnfcom.w |  | 
						
							| 11 |  | cnfcom3.1 |  | 
						
							| 12 |  | suppssdm |  | 
						
							| 13 |  | omelon |  | 
						
							| 14 | 13 | a1i |  | 
						
							| 15 | 1 14 2 | cantnff1o |  | 
						
							| 16 |  | f1ocnv |  | 
						
							| 17 |  | f1of |  | 
						
							| 18 | 15 16 17 | 3syl |  | 
						
							| 19 | 18 3 | ffvelcdmd |  | 
						
							| 20 | 4 19 | eqeltrid |  | 
						
							| 21 | 1 14 2 | cantnfs |  | 
						
							| 22 | 20 21 | mpbid |  | 
						
							| 23 | 22 | simpld |  | 
						
							| 24 | 12 23 | fssdm |  | 
						
							| 25 |  | ovex |  | 
						
							| 26 | 5 | oion |  | 
						
							| 27 | 25 26 | ax-mp |  | 
						
							| 28 | 27 | elexi |  | 
						
							| 29 | 28 | uniex |  | 
						
							| 30 | 29 | sucid |  | 
						
							| 31 |  | peano1 |  | 
						
							| 32 | 31 | a1i |  | 
						
							| 33 | 11 32 | sseldd |  | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 33 | cnfcom2lem |  | 
						
							| 35 | 30 34 | eleqtrrid |  | 
						
							| 36 | 5 | oif |  | 
						
							| 37 | 36 | ffvelcdmi |  | 
						
							| 38 | 35 37 | syl |  | 
						
							| 39 | 24 38 | sseldd |  | 
						
							| 40 |  | onelon |  | 
						
							| 41 | 2 39 40 | syl2anc |  | 
						
							| 42 | 10 41 | eqeltrid |  | 
						
							| 43 |  | oecl |  | 
						
							| 44 | 13 2 43 | sylancr |  | 
						
							| 45 |  | onelon |  | 
						
							| 46 | 44 3 45 | syl2anc |  | 
						
							| 47 |  | ontri1 |  | 
						
							| 48 | 13 46 47 | sylancr |  | 
						
							| 49 | 11 48 | mpbid |  | 
						
							| 50 | 4 | fveq2i |  | 
						
							| 51 |  | f1ocnvfv2 |  | 
						
							| 52 | 15 3 51 | syl2anc |  | 
						
							| 53 | 50 52 | eqtrid |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 | 13 | a1i |  | 
						
							| 56 | 2 | adantr |  | 
						
							| 57 | 20 | adantr |  | 
						
							| 58 | 31 | a1i |  | 
						
							| 59 |  | 1on |  | 
						
							| 60 | 59 | a1i |  | 
						
							| 61 |  | ovexd |  | 
						
							| 62 | 1 14 2 5 20 | cantnfcl |  | 
						
							| 63 | 62 | simpld |  | 
						
							| 64 | 5 | oiiso |  | 
						
							| 65 | 61 63 64 | syl2anc |  | 
						
							| 66 | 65 | ad2antrr |  | 
						
							| 67 |  | isof1o |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 |  | f1ocnv |  | 
						
							| 70 |  | f1of |  | 
						
							| 71 | 68 69 70 | 3syl |  | 
						
							| 72 |  | ffvelcdm |  | 
						
							| 73 | 71 72 | sylancom |  | 
						
							| 74 |  | elssuni |  | 
						
							| 75 | 73 74 | syl |  | 
						
							| 76 |  | onelon |  | 
						
							| 77 | 27 73 76 | sylancr |  | 
						
							| 78 |  | onuni |  | 
						
							| 79 | 27 78 | ax-mp |  | 
						
							| 80 |  | ontri1 |  | 
						
							| 81 | 77 79 80 | sylancl |  | 
						
							| 82 | 75 81 | mpbid |  | 
						
							| 83 | 35 | ad2antrr |  | 
						
							| 84 |  | isorel |  | 
						
							| 85 | 66 83 73 84 | syl12anc |  | 
						
							| 86 |  | fvex |  | 
						
							| 87 | 86 | epeli |  | 
						
							| 88 | 10 | breq1i |  | 
						
							| 89 |  | fvex |  | 
						
							| 90 | 89 | epeli |  | 
						
							| 91 | 88 90 | bitr3i |  | 
						
							| 92 | 85 87 91 | 3bitr3g |  | 
						
							| 93 |  | simplr |  | 
						
							| 94 |  | f1ocnvfv2 |  | 
						
							| 95 | 68 94 | sylancom |  | 
						
							| 96 | 93 95 | eleq12d |  | 
						
							| 97 | 92 96 | bitrd |  | 
						
							| 98 | 82 97 | mtbid |  | 
						
							| 99 |  | onss |  | 
						
							| 100 | 2 99 | syl |  | 
						
							| 101 | 24 100 | sstrd |  | 
						
							| 102 | 101 | adantr |  | 
						
							| 103 | 102 | sselda |  | 
						
							| 104 |  | on0eqel |  | 
						
							| 105 | 103 104 | syl |  | 
						
							| 106 | 105 | ord |  | 
						
							| 107 | 98 106 | mt3d |  | 
						
							| 108 |  | el1o |  | 
						
							| 109 | 107 108 | sylibr |  | 
						
							| 110 | 109 | ex |  | 
						
							| 111 | 110 | ssrdv |  | 
						
							| 112 | 1 55 56 57 58 60 111 | cantnflt2 |  | 
						
							| 113 |  | oe1 |  | 
						
							| 114 | 13 113 | ax-mp |  | 
						
							| 115 | 112 114 | eleqtrdi |  | 
						
							| 116 | 54 115 | eqeltrrd |  | 
						
							| 117 | 116 | ex |  | 
						
							| 118 | 117 | necon3bd |  | 
						
							| 119 | 49 118 | mpd |  | 
						
							| 120 |  | dif1o |  | 
						
							| 121 | 42 119 120 | sylanbrc |  |