Metamath Proof Explorer


Theorem cnfcomlem

Description: Lemma for cnfcom . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)

Ref Expression
Hypotheses cnfcom.s S=domωCNFA
cnfcom.a φAOn
cnfcom.b φBω𝑜A
cnfcom.f F=ωCNFA-1B
cnfcom.g G=OrdIsoEFsupp
cnfcom.h H=seqωkV,zVM+𝑜z
cnfcom.t T=seqωkV,fVK
cnfcom.m M=ω𝑜Gk𝑜FGk
cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
cnfcom.1 φIdomG
cnfcom.2 φOω𝑜GI
cnfcom.3 φTI:HI1-1 ontoO
Assertion cnfcomlem φTsucI:HsucI1-1 ontoω𝑜GI𝑜FGI

Proof

Step Hyp Ref Expression
1 cnfcom.s S=domωCNFA
2 cnfcom.a φAOn
3 cnfcom.b φBω𝑜A
4 cnfcom.f F=ωCNFA-1B
5 cnfcom.g G=OrdIsoEFsupp
6 cnfcom.h H=seqωkV,zVM+𝑜z
7 cnfcom.t T=seqωkV,fVK
8 cnfcom.m M=ω𝑜Gk𝑜FGk
9 cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
10 cnfcom.1 φIdomG
11 cnfcom.2 φOω𝑜GI
12 cnfcom.3 φTI:HI1-1 ontoO
13 omelon ωOn
14 suppssdm FsuppdomF
15 13 a1i φωOn
16 1 15 2 cantnff1o φωCNFA:S1-1 ontoω𝑜A
17 f1ocnv ωCNFA:S1-1 ontoω𝑜AωCNFA-1:ω𝑜A1-1 ontoS
18 f1of ωCNFA-1:ω𝑜A1-1 ontoSωCNFA-1:ω𝑜AS
19 16 17 18 3syl φωCNFA-1:ω𝑜AS
20 19 3 ffvelcdmd φωCNFA-1BS
21 4 20 eqeltrid φFS
22 1 15 2 cantnfs φFSF:AωfinSuppF
23 21 22 mpbid φF:AωfinSuppF
24 23 simpld φF:Aω
25 14 24 fssdm φFsuppA
26 5 oif G:domGFsupp
27 26 ffvelcdmi IdomGGIsuppF
28 10 27 syl φGIsuppF
29 25 28 sseldd φGIA
30 onelon AOnGIAGIOn
31 2 29 30 syl2anc φGIOn
32 oecl ωOnGIOnω𝑜GIOn
33 13 31 32 sylancr φω𝑜GIOn
34 24 29 ffvelcdmd φFGIω
35 nnon FGIωFGIOn
36 34 35 syl φFGIOn
37 omcl ω𝑜GIOnFGIOnω𝑜GI𝑜FGIOn
38 33 36 37 syl2anc φω𝑜GI𝑜FGIOn
39 1 15 2 5 21 cantnfcl φEWesuppFdomGω
40 39 simprd φdomGω
41 elnn IdomGdomGωIω
42 10 40 41 syl2anc φIω
43 6 cantnfvalf H:ωOn
44 43 ffvelcdmi IωHIOn
45 42 44 syl φHIOn
46 eqid yω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1=yω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1
47 46 oacomf1o ω𝑜GI𝑜FGIOnHIOnyω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1:ω𝑜GI𝑜FGI+𝑜HI1-1 ontoHI+𝑜ω𝑜GI𝑜FGI
48 38 45 47 syl2anc φyω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1:ω𝑜GI𝑜FGI+𝑜HI1-1 ontoHI+𝑜ω𝑜GI𝑜FGI
49 7 seqomsuc IωTsucI=IkV,fVKTI
50 42 49 syl φTsucI=IkV,fVKTI
51 nfcv _uK
52 nfcv _vK
53 nfcv _kyω𝑜Gu𝑜FGudomv+𝑜yydomvω𝑜Gu𝑜FGu+𝑜y-1
54 nfcv _fyω𝑜Gu𝑜FGudomv+𝑜yydomvω𝑜Gu𝑜FGu+𝑜y-1
55 oveq2 x=ydomf+𝑜x=domf+𝑜y
56 55 cbvmptv xMdomf+𝑜x=yMdomf+𝑜y
57 simpl k=uf=vk=u
58 57 fveq2d k=uf=vGk=Gu
59 58 oveq2d k=uf=vω𝑜Gk=ω𝑜Gu
60 58 fveq2d k=uf=vFGk=FGu
61 59 60 oveq12d k=uf=vω𝑜Gk𝑜FGk=ω𝑜Gu𝑜FGu
62 8 61 eqtrid k=uf=vM=ω𝑜Gu𝑜FGu
63 simpr k=uf=vf=v
64 63 dmeqd k=uf=vdomf=domv
65 64 oveq1d k=uf=vdomf+𝑜y=domv+𝑜y
66 62 65 mpteq12dv k=uf=vyMdomf+𝑜y=yω𝑜Gu𝑜FGudomv+𝑜y
67 56 66 eqtrid k=uf=vxMdomf+𝑜x=yω𝑜Gu𝑜FGudomv+𝑜y
68 oveq2 x=yM+𝑜x=M+𝑜y
69 68 cbvmptv xdomfM+𝑜x=ydomfM+𝑜y
70 62 oveq1d k=uf=vM+𝑜y=ω𝑜Gu𝑜FGu+𝑜y
71 64 70 mpteq12dv k=uf=vydomfM+𝑜y=ydomvω𝑜Gu𝑜FGu+𝑜y
72 69 71 eqtrid k=uf=vxdomfM+𝑜x=ydomvω𝑜Gu𝑜FGu+𝑜y
73 72 cnveqd k=uf=vxdomfM+𝑜x-1=ydomvω𝑜Gu𝑜FGu+𝑜y-1
74 67 73 uneq12d k=uf=vxMdomf+𝑜xxdomfM+𝑜x-1=yω𝑜Gu𝑜FGudomv+𝑜yydomvω𝑜Gu𝑜FGu+𝑜y-1
75 9 74 eqtrid k=uf=vK=yω𝑜Gu𝑜FGudomv+𝑜yydomvω𝑜Gu𝑜FGu+𝑜y-1
76 51 52 53 54 75 cbvmpo kV,fVK=uV,vVyω𝑜Gu𝑜FGudomv+𝑜yydomvω𝑜Gu𝑜FGu+𝑜y-1
77 76 a1i φkV,fVK=uV,vVyω𝑜Gu𝑜FGudomv+𝑜yydomvω𝑜Gu𝑜FGu+𝑜y-1
78 simprl φu=Iv=TIu=I
79 78 fveq2d φu=Iv=TIGu=GI
80 79 oveq2d φu=Iv=TIω𝑜Gu=ω𝑜GI
81 79 fveq2d φu=Iv=TIFGu=FGI
82 80 81 oveq12d φu=Iv=TIω𝑜Gu𝑜FGu=ω𝑜GI𝑜FGI
83 simpr u=Iv=TIv=TI
84 83 dmeqd u=Iv=TIdomv=domTI
85 f1odm TI:HI1-1 ontoOdomTI=HI
86 12 85 syl φdomTI=HI
87 84 86 sylan9eqr φu=Iv=TIdomv=HI
88 87 oveq1d φu=Iv=TIdomv+𝑜y=HI+𝑜y
89 82 88 mpteq12dv φu=Iv=TIyω𝑜Gu𝑜FGudomv+𝑜y=yω𝑜GI𝑜FGIHI+𝑜y
90 82 oveq1d φu=Iv=TIω𝑜Gu𝑜FGu+𝑜y=ω𝑜GI𝑜FGI+𝑜y
91 87 90 mpteq12dv φu=Iv=TIydomvω𝑜Gu𝑜FGu+𝑜y=yHIω𝑜GI𝑜FGI+𝑜y
92 91 cnveqd φu=Iv=TIydomvω𝑜Gu𝑜FGu+𝑜y-1=yHIω𝑜GI𝑜FGI+𝑜y-1
93 89 92 uneq12d φu=Iv=TIyω𝑜Gu𝑜FGudomv+𝑜yydomvω𝑜Gu𝑜FGu+𝑜y-1=yω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1
94 10 elexd φIV
95 fvexd φTIV
96 ovex ω𝑜GI𝑜FGIV
97 96 mptex yω𝑜GI𝑜FGIHI+𝑜yV
98 fvex HIV
99 98 mptex yHIω𝑜GI𝑜FGI+𝑜yV
100 99 cnvex yHIω𝑜GI𝑜FGI+𝑜y-1V
101 97 100 unex yω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1V
102 101 a1i φyω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1V
103 77 93 94 95 102 ovmpod φIkV,fVKTI=yω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1
104 50 103 eqtrd φTsucI=yω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1
105 104 f1oeq1d φTsucI:ω𝑜GI𝑜FGI+𝑜HI1-1 ontoHI+𝑜ω𝑜GI𝑜FGIyω𝑜GI𝑜FGIHI+𝑜yyHIω𝑜GI𝑜FGI+𝑜y-1:ω𝑜GI𝑜FGI+𝑜HI1-1 ontoHI+𝑜ω𝑜GI𝑜FGI
106 48 105 mpbird φTsucI:ω𝑜GI𝑜FGI+𝑜HI1-1 ontoHI+𝑜ω𝑜GI𝑜FGI
107 13 a1i AOnFSωOn
108 simpl AOnFSAOn
109 simpr AOnFSFS
110 8 oveq1i M+𝑜z=ω𝑜Gk𝑜FGk+𝑜z
111 110 a1i kVzVM+𝑜z=ω𝑜Gk𝑜FGk+𝑜z
112 111 mpoeq3ia kV,zVM+𝑜z=kV,zVω𝑜Gk𝑜FGk+𝑜z
113 eqid =
114 seqomeq12 kV,zVM+𝑜z=kV,zVω𝑜Gk𝑜FGk+𝑜z=seqωkV,zVM+𝑜z=seqωkV,zVω𝑜Gk𝑜FGk+𝑜z
115 112 113 114 mp2an seqωkV,zVM+𝑜z=seqωkV,zVω𝑜Gk𝑜FGk+𝑜z
116 6 115 eqtri H=seqωkV,zVω𝑜Gk𝑜FGk+𝑜z
117 1 107 108 5 109 116 cantnfsuc AOnFSIωHsucI=ω𝑜GI𝑜FGI+𝑜HI
118 2 21 42 117 syl21anc φHsucI=ω𝑜GI𝑜FGI+𝑜HI
119 118 f1oeq2d φTsucI:HsucI1-1 ontoHI+𝑜ω𝑜GI𝑜FGITsucI:ω𝑜GI𝑜FGI+𝑜HI1-1 ontoHI+𝑜ω𝑜GI𝑜FGI
120 106 119 mpbird φTsucI:HsucI1-1 ontoHI+𝑜ω𝑜GI𝑜FGI
121 sssucid domGsucdomG
122 121 10 sselid φIsucdomG
123 epelg IdomGyEIyI
124 10 123 syl φyEIyI
125 124 biimpar φyIyEI
126 ovexd φFsuppV
127 39 simpld φEWesuppF
128 5 oiiso FsuppVEWesuppFGIsomE,EdomGFsupp
129 126 127 128 syl2anc φGIsomE,EdomGFsupp
130 129 adantr φyIGIsomE,EdomGFsupp
131 5 oicl OrddomG
132 ordelss OrddomGIdomGIdomG
133 131 10 132 sylancr φIdomG
134 133 sselda φyIydomG
135 10 adantr φyIIdomG
136 isorel GIsomE,EdomGFsuppydomGIdomGyEIGyEGI
137 130 134 135 136 syl12anc φyIyEIGyEGI
138 125 137 mpbid φyIGyEGI
139 fvex GIV
140 139 epeli GyEGIGyGI
141 138 140 sylib φyIGyGI
142 141 ralrimiva φyIGyGI
143 ffun G:domGFsuppFunG
144 26 143 ax-mp FunG
145 funimass4 FunGIdomGGIGIyIGyGI
146 144 133 145 sylancr φGIGIyIGyGI
147 142 146 mpbird φGIGI
148 13 a1i AOnFSIsucdomGGIOnGIGIωOn
149 simpll AOnFSIsucdomGGIOnGIGIAOn
150 simplr AOnFSIsucdomGGIOnGIGIFS
151 peano1 ω
152 151 a1i AOnFSIsucdomGGIOnGIGIω
153 simpr1 AOnFSIsucdomGGIOnGIGIIsucdomG
154 simpr2 AOnFSIsucdomGGIOnGIGIGIOn
155 simpr3 AOnFSIsucdomGGIOnGIGIGIGI
156 1 148 149 5 150 116 152 153 154 155 cantnflt AOnFSIsucdomGGIOnGIGIHIω𝑜GI
157 2 21 122 31 147 156 syl23anc φHIω𝑜GI
158 24 ffnd φFFnA
159 0ex V
160 159 a1i φV
161 elsuppfn FFnAAOnVGIsuppFGIAFGI
162 158 2 160 161 syl3anc φGIsuppFGIAFGI
163 simpr GIAFGIFGI
164 162 163 syl6bi φGIsuppFFGI
165 28 164 mpd φFGI
166 on0eln0 FGIOnFGIFGI
167 36 166 syl φFGIFGI
168 165 167 mpbird φFGI
169 omword1 ω𝑜GIOnFGIOnFGIω𝑜GIω𝑜GI𝑜FGI
170 33 36 168 169 syl21anc φω𝑜GIω𝑜GI𝑜FGI
171 oaabs2 HIω𝑜GIω𝑜GI𝑜FGIOnω𝑜GIω𝑜GI𝑜FGIHI+𝑜ω𝑜GI𝑜FGI=ω𝑜GI𝑜FGI
172 157 38 170 171 syl21anc φHI+𝑜ω𝑜GI𝑜FGI=ω𝑜GI𝑜FGI
173 172 f1oeq3d φTsucI:HsucI1-1 ontoHI+𝑜ω𝑜GI𝑜FGITsucI:HsucI1-1 ontoω𝑜GI𝑜FGI
174 120 173 mpbid φTsucI:HsucI1-1 ontoω𝑜GI𝑜FGI