Metamath Proof Explorer


Theorem cnllycmp

Description: The topology on the complex numbers is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Hypothesis cnllycmp.1 J=TopOpenfld
Assertion cnllycmp JN-Locally Comp

Proof

Step Hyp Ref Expression
1 cnllycmp.1 J=TopOpenfld
2 1 cnfldtop JTop
3 cnxmet abs∞Met
4 1 cnfldtopn J=MetOpenabs
5 4 mopni2 abs∞MetxJyxr+yballabsrx
6 3 5 mp3an1 xJyxr+yballabsrx
7 2 a1i xJyxr+yballabsrxJTop
8 3 a1i xJyxr+yballabsrxabs∞Met
9 elssuni xJxJ
10 9 ad2antrr xJyxr+yballabsrxxJ
11 1 cnfldtopon JTopOn
12 11 toponunii =J
13 10 12 sseqtrrdi xJyxr+yballabsrxx
14 simplr xJyxr+yballabsrxyx
15 13 14 sseldd xJyxr+yballabsrxy
16 rphalfcl r+r2+
17 16 ad2antrl xJyxr+yballabsrxr2+
18 17 rpxrd xJyxr+yballabsrxr2*
19 4 blopn abs∞Metyr2*yballabsr2J
20 8 15 18 19 syl3anc xJyxr+yballabsrxyballabsr2J
21 blcntr abs∞Metyr2+yyballabsr2
22 8 15 17 21 syl3anc xJyxr+yballabsrxyyballabsr2
23 opnneip JTopyballabsr2Jyyballabsr2yballabsr2neiJy
24 7 20 22 23 syl3anc xJyxr+yballabsrxyballabsr2neiJy
25 blssm abs∞Metyr2*yballabsr2
26 8 15 18 25 syl3anc xJyxr+yballabsrxyballabsr2
27 12 sscls JTopyballabsr2yballabsr2clsJyballabsr2
28 7 26 27 syl2anc xJyxr+yballabsrxyballabsr2clsJyballabsr2
29 rpxr r+r*
30 29 ad2antrl xJyxr+yballabsrxr*
31 rphalflt r+r2<r
32 31 ad2antrl xJyxr+yballabsrxr2<r
33 4 blsscls abs∞Metyr2*r*r2<rclsJyballabsr2yballabsr
34 8 15 18 30 32 33 syl23anc xJyxr+yballabsrxclsJyballabsr2yballabsr
35 simprr xJyxr+yballabsrxyballabsrx
36 34 35 sstrd xJyxr+yballabsrxclsJyballabsr2x
37 36 13 sstrd xJyxr+yballabsrxclsJyballabsr2
38 12 ssnei2 JTopyballabsr2neiJyyballabsr2clsJyballabsr2clsJyballabsr2clsJyballabsr2neiJy
39 7 24 28 37 38 syl22anc xJyxr+yballabsrxclsJyballabsr2neiJy
40 vex xV
41 40 elpw2 clsJyballabsr2𝒫xclsJyballabsr2x
42 36 41 sylibr xJyxr+yballabsrxclsJyballabsr2𝒫x
43 39 42 elind xJyxr+yballabsrxclsJyballabsr2neiJy𝒫x
44 12 clscld JTopyballabsr2clsJyballabsr2ClsdJ
45 7 26 44 syl2anc xJyxr+yballabsrxclsJyballabsr2ClsdJ
46 15 abscld xJyxr+yballabsrxy
47 17 rpred xJyxr+yballabsrxr2
48 46 47 readdcld xJyxr+yballabsrxy+r2
49 eqid w|yabswr2=w|yabswr2
50 4 49 blcls abs∞Metyr2*clsJyballabsr2w|yabswr2
51 8 15 18 50 syl3anc xJyxr+yballabsrxclsJyballabsr2w|yabswr2
52 simpr xJyxr+yballabsrxzz
53 15 adantr xJyxr+yballabsrxzy
54 52 53 abs2difd xJyxr+yballabsrxzzyzy
55 52 abscld xJyxr+yballabsrxzz
56 46 adantr xJyxr+yballabsrxzy
57 55 56 resubcld xJyxr+yballabsrxzzy
58 52 53 subcld xJyxr+yballabsrxzzy
59 58 abscld xJyxr+yballabsrxzzy
60 47 adantr xJyxr+yballabsrxzr2
61 letr zyzyr2zyzyzyr2zyr2
62 57 59 60 61 syl3anc xJyxr+yballabsrxzzyzyzyr2zyr2
63 54 62 mpand xJyxr+yballabsrxzzyr2zyr2
64 52 53 abssubd xJyxr+yballabsrxzzy=yz
65 eqid abs=abs
66 65 cnmetdval yzyabsz=yz
67 15 66 sylan xJyxr+yballabsrxzyabsz=yz
68 64 67 eqtr4d xJyxr+yballabsrxzzy=yabsz
69 68 breq1d xJyxr+yballabsrxzzyr2yabszr2
70 55 56 60 lesubadd2d xJyxr+yballabsrxzzyr2zy+r2
71 63 69 70 3imtr3d xJyxr+yballabsrxzyabszr2zy+r2
72 71 ralrimiva xJyxr+yballabsrxzyabszr2zy+r2
73 oveq2 w=zyabsw=yabsz
74 73 breq1d w=zyabswr2yabszr2
75 74 ralrab zw|yabswr2zy+r2zyabszr2zy+r2
76 72 75 sylibr xJyxr+yballabsrxzw|yabswr2zy+r2
77 ssralv clsJyballabsr2w|yabswr2zw|yabswr2zy+r2zclsJyballabsr2zy+r2
78 51 76 77 sylc xJyxr+yballabsrxzclsJyballabsr2zy+r2
79 brralrspcev y+r2zclsJyballabsr2zy+r2szclsJyballabsr2zs
80 48 78 79 syl2anc xJyxr+yballabsrxszclsJyballabsr2zs
81 eqid J𝑡clsJyballabsr2=J𝑡clsJyballabsr2
82 1 81 cnheibor clsJyballabsr2J𝑡clsJyballabsr2CompclsJyballabsr2ClsdJszclsJyballabsr2zs
83 37 82 syl xJyxr+yballabsrxJ𝑡clsJyballabsr2CompclsJyballabsr2ClsdJszclsJyballabsr2zs
84 45 80 83 mpbir2and xJyxr+yballabsrxJ𝑡clsJyballabsr2Comp
85 oveq2 u=clsJyballabsr2J𝑡u=J𝑡clsJyballabsr2
86 85 eleq1d u=clsJyballabsr2J𝑡uCompJ𝑡clsJyballabsr2Comp
87 86 rspcev clsJyballabsr2neiJy𝒫xJ𝑡clsJyballabsr2CompuneiJy𝒫xJ𝑡uComp
88 43 84 87 syl2anc xJyxr+yballabsrxuneiJy𝒫xJ𝑡uComp
89 6 88 rexlimddv xJyxuneiJy𝒫xJ𝑡uComp
90 89 rgen2 xJyxuneiJy𝒫xJ𝑡uComp
91 isnlly JN-Locally Comp JTopxJyxuneiJy𝒫xJ𝑡uComp
92 2 90 91 mpbir2an JN-Locally Comp