Step |
Hyp |
Ref |
Expression |
1 |
|
constrrtcc.s |
|
2 |
|
constrrtcc.a |
|
3 |
|
constrrtcc.b |
|
4 |
|
constrrtcc.c |
|
5 |
|
constrrtcc.d |
|
6 |
|
constrrtcc.e |
|
7 |
|
constrrtcc.f |
|
8 |
|
constrrtcc.x |
|
9 |
|
constrrtcc.1 |
|
10 |
|
constrrtcc.2 |
|
11 |
|
constrrtcc.3 |
|
12 |
|
constrrtcc.4 |
|
13 |
|
constrrtcc.5 |
|
14 |
|
constrrtcc.m |
|
15 |
|
constrrtcc.n |
|
16 |
|
constrrtcclem.1 |
|
17 |
|
constrrtcclem.2 |
|
18 |
8
|
sqcld |
|
19 |
1 6
|
sseldd |
|
20 |
1 7
|
sseldd |
|
21 |
19 20
|
subcld |
|
22 |
21
|
cjcld |
|
23 |
21 22
|
mulcld |
|
24 |
13 23
|
eqeltrid |
|
25 |
1 5
|
sseldd |
|
26 |
25
|
cjcld |
|
27 |
1 2
|
sseldd |
|
28 |
25 27
|
addcld |
|
29 |
26 28
|
mulcld |
|
30 |
24 29
|
subcld |
|
31 |
1 3
|
sseldd |
|
32 |
1 4
|
sseldd |
|
33 |
31 32
|
subcld |
|
34 |
33
|
cjcld |
|
35 |
33 34
|
mulcld |
|
36 |
12 35
|
eqeltrid |
|
37 |
27
|
cjcld |
|
38 |
37 28
|
mulcld |
|
39 |
36 38
|
subcld |
|
40 |
30 39
|
subcld |
|
41 |
26 37
|
subcld |
|
42 |
25 27
|
cjsubd |
|
43 |
25 27
|
subcld |
|
44 |
9
|
necomd |
|
45 |
25 27 44
|
subne0d |
|
46 |
43 45
|
cjne0d |
|
47 |
42 46
|
eqnetrrd |
|
48 |
40 41 47
|
divcld |
|
49 |
14 48
|
eqeltrid |
|
50 |
49 8
|
mulcld |
|
51 |
25 27
|
mulcld |
|
52 |
37 51
|
mulcld |
|
53 |
36 25
|
mulcld |
|
54 |
52 53
|
subcld |
|
55 |
26 51
|
mulcld |
|
56 |
24 27
|
mulcld |
|
57 |
55 56
|
subcld |
|
58 |
54 57
|
subcld |
|
59 |
58 41 47
|
divcld |
|
60 |
59
|
negcld |
|
61 |
15 60
|
eqeltrid |
|
62 |
18 50 61
|
addassd |
|
63 |
41 18
|
mulcld |
|
64 |
40 8
|
mulcld |
|
65 |
26 37 18
|
subdird |
|
66 |
30 39 8
|
subdird |
|
67 |
65 66
|
oveq12d |
|
68 |
26 18
|
mulcld |
|
69 |
30 8
|
mulcld |
|
70 |
37 18
|
mulcld |
|
71 |
39 8
|
mulcld |
|
72 |
68 69 70 71
|
addsub4d |
|
73 |
8 27
|
subcld |
|
74 |
8 25
|
subcld |
|
75 |
73 74
|
mulcomd |
|
76 |
75
|
oveq2d |
|
77 |
73
|
cjcld |
|
78 |
31 32 16
|
subne0d |
|
79 |
33 78
|
absne0d |
|
80 |
10 79
|
eqnetrd |
|
81 |
73
|
abs00ad |
|
82 |
81
|
necon3bid |
|
83 |
80 82
|
mpbid |
|
84 |
10
|
oveq1d |
|
85 |
73
|
absvalsqd |
|
86 |
33
|
absvalsqd |
|
87 |
84 85 86
|
3eqtr3d |
|
88 |
87 12
|
eqtr4di |
|
89 |
73 77 83 88
|
mvllmuld |
|
90 |
89 77
|
eqeltrrd |
|
91 |
37 90
|
addcld |
|
92 |
91 73 74
|
mulassd |
|
93 |
36 73 83
|
divcan1d |
|
94 |
93
|
oveq2d |
|
95 |
37 73 90 94
|
joinlmuladdmuld |
|
96 |
95
|
oveq1d |
|
97 |
37 73
|
mulcld |
|
98 |
97 36 74
|
adddird |
|
99 |
37 73 74
|
mulassd |
|
100 |
8 27 8 25
|
mulsubd |
|
101 |
8
|
sqvald |
|
102 |
101
|
oveq1d |
|
103 |
8 25 27
|
adddid |
|
104 |
102 103
|
oveq12d |
|
105 |
8 28
|
mulcld |
|
106 |
18 51 105
|
addsubd |
|
107 |
100 104 106
|
3eqtr2d |
|
108 |
107
|
oveq2d |
|
109 |
18 105
|
subcld |
|
110 |
37 109 51
|
adddid |
|
111 |
99 108 110
|
3eqtrd |
|
112 |
36 8 25
|
subdid |
|
113 |
111 112
|
oveq12d |
|
114 |
96 98 113
|
3eqtrd |
|
115 |
8 27
|
cjsubd |
|
116 |
115 89
|
eqtr3d |
|
117 |
8
|
cjcld |
|
118 |
117 37 90
|
subaddd |
|
119 |
116 118
|
mpbid |
|
120 |
119
|
oveq1d |
|
121 |
92 114 120
|
3eqtr3rd |
|
122 |
37 109
|
mulcld |
|
123 |
122 52
|
addcld |
|
124 |
36 8
|
mulcld |
|
125 |
123 124 53
|
addsubassd |
|
126 |
122 52 124
|
add32d |
|
127 |
126
|
oveq1d |
|
128 |
121 125 127
|
3eqtr2d |
|
129 |
122 124
|
addcld |
|
130 |
129 52 53
|
addsubassd |
|
131 |
38 8
|
mulcld |
|
132 |
70 131 124
|
subadd23d |
|
133 |
37 18 105
|
subdid |
|
134 |
37 8 28
|
mul12d |
|
135 |
8 38
|
mulcomd |
|
136 |
134 135
|
eqtrd |
|
137 |
136
|
oveq2d |
|
138 |
133 137
|
eqtrd |
|
139 |
138
|
oveq1d |
|
140 |
36 38 8
|
subdird |
|
141 |
140
|
oveq2d |
|
142 |
132 139 141
|
3eqtr4d |
|
143 |
142
|
oveq1d |
|
144 |
128 130 143
|
3eqtrd |
|
145 |
74
|
cjcld |
|
146 |
19 20 17
|
subne0d |
|
147 |
21 146
|
absne0d |
|
148 |
11 147
|
eqnetrd |
|
149 |
74
|
abs00ad |
|
150 |
149
|
necon3bid |
|
151 |
148 150
|
mpbid |
|
152 |
11
|
oveq1d |
|
153 |
74
|
absvalsqd |
|
154 |
21
|
absvalsqd |
|
155 |
152 153 154
|
3eqtr3d |
|
156 |
155 13
|
eqtr4di |
|
157 |
74 145 151 156
|
mvllmuld |
|
158 |
157 145
|
eqeltrrd |
|
159 |
26 158
|
addcld |
|
160 |
159 74 73
|
mulassd |
|
161 |
24 74 151
|
divcan1d |
|
162 |
161
|
oveq2d |
|
163 |
26 74 158 162
|
joinlmuladdmuld |
|
164 |
163
|
oveq1d |
|
165 |
26 74
|
mulcld |
|
166 |
165 24 73
|
adddird |
|
167 |
26 74 73
|
mulassd |
|
168 |
75
|
oveq2d |
|
169 |
167 168
|
eqtr4d |
|
170 |
107
|
oveq2d |
|
171 |
26 109 51
|
adddid |
|
172 |
169 170 171
|
3eqtrd |
|
173 |
24 8 27
|
subdid |
|
174 |
172 173
|
oveq12d |
|
175 |
164 166 174
|
3eqtrd |
|
176 |
8 25
|
cjsubd |
|
177 |
176 157
|
eqtr3d |
|
178 |
117 26 158
|
subaddd |
|
179 |
177 178
|
mpbid |
|
180 |
179
|
oveq1d |
|
181 |
160 175 180
|
3eqtr3rd |
|
182 |
26 109
|
mulcld |
|
183 |
182 55
|
addcld |
|
184 |
24 8
|
mulcld |
|
185 |
183 184 56
|
addsubassd |
|
186 |
182 55 184
|
add32d |
|
187 |
186
|
oveq1d |
|
188 |
181 185 187
|
3eqtr2d |
|
189 |
182 184
|
addcld |
|
190 |
189 55 56
|
addsubassd |
|
191 |
29 8
|
mulcld |
|
192 |
68 191 184
|
subadd23d |
|
193 |
26 18 105
|
subdid |
|
194 |
26 8 28
|
mul12d |
|
195 |
8 29
|
mulcomd |
|
196 |
194 195
|
eqtrd |
|
197 |
196
|
oveq2d |
|
198 |
193 197
|
eqtrd |
|
199 |
198
|
oveq1d |
|
200 |
24 29 8
|
subdird |
|
201 |
200
|
oveq2d |
|
202 |
192 199 201
|
3eqtr4d |
|
203 |
202
|
oveq1d |
|
204 |
188 190 203
|
3eqtrd |
|
205 |
76 144 204
|
3eqtr3d |
|
206 |
142 129
|
eqeltrrd |
|
207 |
202 189
|
eqeltrrd |
|
208 |
206 54 207 57
|
addsubeq4d |
|
209 |
205 208
|
mpbid |
|
210 |
67 72 209
|
3eqtr2d |
|
211 |
63 64 210
|
mvlraddd |
|
212 |
41 18 47 211
|
mvllmuld |
|
213 |
58 64 41 47
|
divsubdird |
|
214 |
15
|
eqcomi |
|
215 |
214
|
a1i |
|
216 |
59 215
|
negcon1ad |
|
217 |
216
|
oveq1d |
|
218 |
213 217
|
eqtr4d |
|
219 |
40 8 41 47
|
div23d |
|
220 |
14
|
oveq1i |
|
221 |
219 220
|
eqtr4di |
|
222 |
221
|
oveq2d |
|
223 |
212 218 222
|
3eqtrd |
|
224 |
216 59
|
eqeltrd |
|
225 |
18 50 224
|
addlsub |
|
226 |
223 225
|
mpbird |
|
227 |
18 50
|
addcld |
|
228 |
|
addeq0 |
|
229 |
227 61 228
|
syl2anc |
|
230 |
226 229
|
mpbird |
|
231 |
62 230
|
eqtr3d |
|