Metamath Proof Explorer


Theorem constrrtcclem

Description: In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. Case of non-degenerate circles. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses constrrtcc.s φ S
constrrtcc.a φ A S
constrrtcc.b φ B S
constrrtcc.c φ C S
constrrtcc.d φ D S
constrrtcc.e φ E S
constrrtcc.f φ F S
constrrtcc.x φ X
constrrtcc.1 φ A D
constrrtcc.2 φ X A = B C
constrrtcc.3 φ X D = E F
constrrtcc.4 P = B C B C
constrrtcc.5 Q = E F E F
constrrtcc.m M = Q - D D + A - P A D + A D A
constrrtcc.n N = A D A - P D - D D A Q A D A
constrrtcclem.1 φ B C
constrrtcclem.2 φ E F
Assertion constrrtcclem φ X 2 + M X + N = 0

Proof

Step Hyp Ref Expression
1 constrrtcc.s φ S
2 constrrtcc.a φ A S
3 constrrtcc.b φ B S
4 constrrtcc.c φ C S
5 constrrtcc.d φ D S
6 constrrtcc.e φ E S
7 constrrtcc.f φ F S
8 constrrtcc.x φ X
9 constrrtcc.1 φ A D
10 constrrtcc.2 φ X A = B C
11 constrrtcc.3 φ X D = E F
12 constrrtcc.4 P = B C B C
13 constrrtcc.5 Q = E F E F
14 constrrtcc.m M = Q - D D + A - P A D + A D A
15 constrrtcc.n N = A D A - P D - D D A Q A D A
16 constrrtcclem.1 φ B C
17 constrrtcclem.2 φ E F
18 8 sqcld φ X 2
19 1 6 sseldd φ E
20 1 7 sseldd φ F
21 19 20 subcld φ E F
22 21 cjcld φ E F
23 21 22 mulcld φ E F E F
24 13 23 eqeltrid φ Q
25 1 5 sseldd φ D
26 25 cjcld φ D
27 1 2 sseldd φ A
28 25 27 addcld φ D + A
29 26 28 mulcld φ D D + A
30 24 29 subcld φ Q D D + A
31 1 3 sseldd φ B
32 1 4 sseldd φ C
33 31 32 subcld φ B C
34 33 cjcld φ B C
35 33 34 mulcld φ B C B C
36 12 35 eqeltrid φ P
37 27 cjcld φ A
38 37 28 mulcld φ A D + A
39 36 38 subcld φ P A D + A
40 30 39 subcld φ Q - D D + A - P A D + A
41 26 37 subcld φ D A
42 25 27 cjsubd φ D A = D A
43 25 27 subcld φ D A
44 9 necomd φ D A
45 25 27 44 subne0d φ D A 0
46 43 45 cjne0d φ D A 0
47 42 46 eqnetrrd φ D A 0
48 40 41 47 divcld φ Q - D D + A - P A D + A D A
49 14 48 eqeltrid φ M
50 49 8 mulcld φ M X
51 25 27 mulcld φ D A
52 37 51 mulcld φ A D A
53 36 25 mulcld φ P D
54 52 53 subcld φ A D A P D
55 26 51 mulcld φ D D A
56 24 27 mulcld φ Q A
57 55 56 subcld φ D D A Q A
58 54 57 subcld φ A D A - P D - D D A Q A
59 58 41 47 divcld φ A D A - P D - D D A Q A D A
60 59 negcld φ A D A - P D - D D A Q A D A
61 15 60 eqeltrid φ N
62 18 50 61 addassd φ X 2 + M X + N = X 2 + M X + N
63 41 18 mulcld φ D A X 2
64 40 8 mulcld φ Q - D D + A - P A D + A X
65 26 37 18 subdird φ D A X 2 = D X 2 A X 2
66 30 39 8 subdird φ Q - D D + A - P A D + A X = Q D D + A X P A D + A X
67 65 66 oveq12d φ D A X 2 + Q - D D + A - P A D + A X = D X 2 A X 2 + Q D D + A X - P A D + A X
68 26 18 mulcld φ D X 2
69 30 8 mulcld φ Q D D + A X
70 37 18 mulcld φ A X 2
71 39 8 mulcld φ P A D + A X
72 68 69 70 71 addsub4d φ D X 2 + Q D D + A X - A X 2 + P A D + A X = D X 2 A X 2 + Q D D + A X - P A D + A X
73 8 27 subcld φ X A
74 8 25 subcld φ X D
75 73 74 mulcomd φ X A X D = X D X A
76 75 oveq2d φ X X A X D = X X D X A
77 73 cjcld φ X A
78 31 32 16 subne0d φ B C 0
79 33 78 absne0d φ B C 0
80 10 79 eqnetrd φ X A 0
81 73 abs00ad φ X A = 0 X A = 0
82 81 necon3bid φ X A 0 X A 0
83 80 82 mpbid φ X A 0
84 10 oveq1d φ X A 2 = B C 2
85 73 absvalsqd φ X A 2 = X A X A
86 33 absvalsqd φ B C 2 = B C B C
87 84 85 86 3eqtr3d φ X A X A = B C B C
88 87 12 eqtr4di φ X A X A = P
89 73 77 83 88 mvllmuld φ X A = P X A
90 89 77 eqeltrrd φ P X A
91 37 90 addcld φ A + P X A
92 91 73 74 mulassd φ A + P X A X A X D = A + P X A X A X D
93 36 73 83 divcan1d φ P X A X A = P
94 93 oveq2d φ A X A + P X A X A = A X A + P
95 37 73 90 94 joinlmuladdmuld φ A + P X A X A = A X A + P
96 95 oveq1d φ A + P X A X A X D = A X A + P X D
97 37 73 mulcld φ A X A
98 97 36 74 adddird φ A X A + P X D = A X A X D + P X D
99 37 73 74 mulassd φ A X A X D = A X A X D
100 8 27 8 25 mulsubd φ X A X D = X X + D A - X D + X A
101 8 sqvald φ X 2 = X X
102 101 oveq1d φ X 2 + D A = X X + D A
103 8 25 27 adddid φ X D + A = X D + X A
104 102 103 oveq12d φ X 2 + D A - X D + A = X X + D A - X D + X A
105 8 28 mulcld φ X D + A
106 18 51 105 addsubd φ X 2 + D A - X D + A = X 2 - X D + A + D A
107 100 104 106 3eqtr2d φ X A X D = X 2 - X D + A + D A
108 107 oveq2d φ A X A X D = A X 2 - X D + A + D A
109 18 105 subcld φ X 2 X D + A
110 37 109 51 adddid φ A X 2 - X D + A + D A = A X 2 X D + A + A D A
111 99 108 110 3eqtrd φ A X A X D = A X 2 X D + A + A D A
112 36 8 25 subdid φ P X D = P X P D
113 111 112 oveq12d φ A X A X D + P X D = A X 2 X D + A + A D A + P X P D
114 96 98 113 3eqtrd φ A + P X A X A X D = A X 2 X D + A + A D A + P X P D
115 8 27 cjsubd φ X A = X A
116 115 89 eqtr3d φ X A = P X A
117 8 cjcld φ X
118 117 37 90 subaddd φ X A = P X A A + P X A = X
119 116 118 mpbid φ A + P X A = X
120 119 oveq1d φ A + P X A X A X D = X X A X D
121 92 114 120 3eqtr3rd φ X X A X D = A X 2 X D + A + A D A + P X P D
122 37 109 mulcld φ A X 2 X D + A
123 122 52 addcld φ A X 2 X D + A + A D A
124 36 8 mulcld φ P X
125 123 124 53 addsubassd φ A X 2 X D + A + A D A + P X - P D = A X 2 X D + A + A D A + P X P D
126 122 52 124 add32d φ A X 2 X D + A + A D A + P X = A X 2 X D + A + P X + A D A
127 126 oveq1d φ A X 2 X D + A + A D A + P X - P D = A X 2 X D + A + P X + A D A - P D
128 121 125 127 3eqtr2d φ X X A X D = A X 2 X D + A + P X + A D A - P D
129 122 124 addcld φ A X 2 X D + A + P X
130 129 52 53 addsubassd φ A X 2 X D + A + P X + A D A - P D = A X 2 X D + A + P X + A D A P D
131 38 8 mulcld φ A D + A X
132 70 131 124 subadd23d φ A X 2 - A D + A X + P X = A X 2 + P X - A D + A X
133 37 18 105 subdid φ A X 2 X D + A = A X 2 A X D + A
134 37 8 28 mul12d φ A X D + A = X A D + A
135 8 38 mulcomd φ X A D + A = A D + A X
136 134 135 eqtrd φ A X D + A = A D + A X
137 136 oveq2d φ A X 2 A X D + A = A X 2 A D + A X
138 133 137 eqtrd φ A X 2 X D + A = A X 2 A D + A X
139 138 oveq1d φ A X 2 X D + A + P X = A X 2 - A D + A X + P X
140 36 38 8 subdird φ P A D + A X = P X A D + A X
141 140 oveq2d φ A X 2 + P A D + A X = A X 2 + P X - A D + A X
142 132 139 141 3eqtr4d φ A X 2 X D + A + P X = A X 2 + P A D + A X
143 142 oveq1d φ A X 2 X D + A + P X + A D A P D = A X 2 + P A D + A X + A D A P D
144 128 130 143 3eqtrd φ X X A X D = A X 2 + P A D + A X + A D A P D
145 74 cjcld φ X D
146 19 20 17 subne0d φ E F 0
147 21 146 absne0d φ E F 0
148 11 147 eqnetrd φ X D 0
149 74 abs00ad φ X D = 0 X D = 0
150 149 necon3bid φ X D 0 X D 0
151 148 150 mpbid φ X D 0
152 11 oveq1d φ X D 2 = E F 2
153 74 absvalsqd φ X D 2 = X D X D
154 21 absvalsqd φ E F 2 = E F E F
155 152 153 154 3eqtr3d φ X D X D = E F E F
156 155 13 eqtr4di φ X D X D = Q
157 74 145 151 156 mvllmuld φ X D = Q X D
158 157 145 eqeltrrd φ Q X D
159 26 158 addcld φ D + Q X D
160 159 74 73 mulassd φ D + Q X D X D X A = D + Q X D X D X A
161 24 74 151 divcan1d φ Q X D X D = Q
162 161 oveq2d φ D X D + Q X D X D = D X D + Q
163 26 74 158 162 joinlmuladdmuld φ D + Q X D X D = D X D + Q
164 163 oveq1d φ D + Q X D X D X A = D X D + Q X A
165 26 74 mulcld φ D X D
166 165 24 73 adddird φ D X D + Q X A = D X D X A + Q X A
167 26 74 73 mulassd φ D X D X A = D X D X A
168 75 oveq2d φ D X A X D = D X D X A
169 167 168 eqtr4d φ D X D X A = D X A X D
170 107 oveq2d φ D X A X D = D X 2 - X D + A + D A
171 26 109 51 adddid φ D X 2 - X D + A + D A = D X 2 X D + A + D D A
172 169 170 171 3eqtrd φ D X D X A = D X 2 X D + A + D D A
173 24 8 27 subdid φ Q X A = Q X Q A
174 172 173 oveq12d φ D X D X A + Q X A = D X 2 X D + A + D D A + Q X Q A
175 164 166 174 3eqtrd φ D + Q X D X D X A = D X 2 X D + A + D D A + Q X Q A
176 8 25 cjsubd φ X D = X D
177 176 157 eqtr3d φ X D = Q X D
178 117 26 158 subaddd φ X D = Q X D D + Q X D = X
179 177 178 mpbid φ D + Q X D = X
180 179 oveq1d φ D + Q X D X D X A = X X D X A
181 160 175 180 3eqtr3rd φ X X D X A = D X 2 X D + A + D D A + Q X Q A
182 26 109 mulcld φ D X 2 X D + A
183 182 55 addcld φ D X 2 X D + A + D D A
184 24 8 mulcld φ Q X
185 183 184 56 addsubassd φ D X 2 X D + A + D D A + Q X - Q A = D X 2 X D + A + D D A + Q X Q A
186 182 55 184 add32d φ D X 2 X D + A + D D A + Q X = D X 2 X D + A + Q X + D D A
187 186 oveq1d φ D X 2 X D + A + D D A + Q X - Q A = D X 2 X D + A + Q X + D D A - Q A
188 181 185 187 3eqtr2d φ X X D X A = D X 2 X D + A + Q X + D D A - Q A
189 182 184 addcld φ D X 2 X D + A + Q X
190 189 55 56 addsubassd φ D X 2 X D + A + Q X + D D A - Q A = D X 2 X D + A + Q X + D D A Q A
191 29 8 mulcld φ D D + A X
192 68 191 184 subadd23d φ D X 2 - D D + A X + Q X = D X 2 + Q X - D D + A X
193 26 18 105 subdid φ D X 2 X D + A = D X 2 D X D + A
194 26 8 28 mul12d φ D X D + A = X D D + A
195 8 29 mulcomd φ X D D + A = D D + A X
196 194 195 eqtrd φ D X D + A = D D + A X
197 196 oveq2d φ D X 2 D X D + A = D X 2 D D + A X
198 193 197 eqtrd φ D X 2 X D + A = D X 2 D D + A X
199 198 oveq1d φ D X 2 X D + A + Q X = D X 2 - D D + A X + Q X
200 24 29 8 subdird φ Q D D + A X = Q X D D + A X
201 200 oveq2d φ D X 2 + Q D D + A X = D X 2 + Q X - D D + A X
202 192 199 201 3eqtr4d φ D X 2 X D + A + Q X = D X 2 + Q D D + A X
203 202 oveq1d φ D X 2 X D + A + Q X + D D A Q A = D X 2 + Q D D + A X + D D A Q A
204 188 190 203 3eqtrd φ X X D X A = D X 2 + Q D D + A X + D D A Q A
205 76 144 204 3eqtr3d φ A X 2 + P A D + A X + A D A P D = D X 2 + Q D D + A X + D D A Q A
206 142 129 eqeltrrd φ A X 2 + P A D + A X
207 202 189 eqeltrrd φ D X 2 + Q D D + A X
208 206 54 207 57 addsubeq4d φ A X 2 + P A D + A X + A D A P D = D X 2 + Q D D + A X + D D A Q A D X 2 + Q D D + A X - A X 2 + P A D + A X = A D A - P D - D D A Q A
209 205 208 mpbid φ D X 2 + Q D D + A X - A X 2 + P A D + A X = A D A - P D - D D A Q A
210 67 72 209 3eqtr2d φ D A X 2 + Q - D D + A - P A D + A X = A D A - P D - D D A Q A
211 63 64 210 mvlraddd φ D A X 2 = A D A P D - D D A Q A - Q - D D + A - P A D + A X
212 41 18 47 211 mvllmuld φ X 2 = A D A P D - D D A Q A - Q - D D + A - P A D + A X D A
213 58 64 41 47 divsubdird φ A D A P D - D D A Q A - Q - D D + A - P A D + A X D A = A D A - P D - D D A Q A D A Q - D D + A - P A D + A X D A
214 15 eqcomi A D A - P D - D D A Q A D A = N
215 214 a1i φ A D A - P D - D D A Q A D A = N
216 59 215 negcon1ad φ N = A D A - P D - D D A Q A D A
217 216 oveq1d φ - N - Q - D D + A - P A D + A X D A = A D A - P D - D D A Q A D A Q - D D + A - P A D + A X D A
218 213 217 eqtr4d φ A D A P D - D D A Q A - Q - D D + A - P A D + A X D A = - N - Q - D D + A - P A D + A X D A
219 40 8 41 47 div23d φ Q - D D + A - P A D + A X D A = Q - D D + A - P A D + A D A X
220 14 oveq1i M X = Q - D D + A - P A D + A D A X
221 219 220 eqtr4di φ Q - D D + A - P A D + A X D A = M X
222 221 oveq2d φ - N - Q - D D + A - P A D + A X D A = - N - M X
223 212 218 222 3eqtrd φ X 2 = - N - M X
224 216 59 eqeltrd φ N
225 18 50 224 addlsub φ X 2 + M X = N X 2 = - N - M X
226 223 225 mpbird φ X 2 + M X = N
227 18 50 addcld φ X 2 + M X
228 addeq0 X 2 + M X N X 2 + M X + N = 0 X 2 + M X = N
229 227 61 228 syl2anc φ X 2 + M X + N = 0 X 2 + M X = N
230 226 229 mpbird φ X 2 + M X + N = 0
231 62 230 eqtr3d φ X 2 + M X + N = 0