Metamath Proof Explorer


Theorem coprmprod

Description: The product of the elements of a sequence of pairwise coprime positive integers is coprime to a positive integer which is coprime to all integers of the sequence. (Contributed by AV, 18-Aug-2020)

Ref Expression
Assertion coprmprod MFinMNF:mMFmgcdN=1mMnMmFmgcdFn=1mMFmgcdN=1

Proof

Step Hyp Ref Expression
1 sseq1 x=x
2 1 3anbi1d x=xNF:NF:
3 raleq x=mxFmgcdN=1mFmgcdN=1
4 difeq1 x=xm=m
5 4 raleqdv x=nxmFmgcdFn=1nmFmgcdFn=1
6 5 raleqbi1dv x=mxnxmFmgcdFn=1mnmFmgcdFn=1
7 2 3 6 3anbi123d x=xNF:mxFmgcdN=1mxnxmFmgcdFn=1NF:mFmgcdN=1mnmFmgcdFn=1
8 prodeq1 x=mxFm=mFm
9 8 oveq1d x=mxFmgcdN=mFmgcdN
10 9 eqeq1d x=mxFmgcdN=1mFmgcdN=1
11 7 10 imbi12d x=xNF:mxFmgcdN=1mxnxmFmgcdFn=1mxFmgcdN=1NF:mFmgcdN=1mnmFmgcdFn=1mFmgcdN=1
12 sseq1 x=yxy
13 12 3anbi1d x=yxNF:yNF:
14 raleq x=ymxFmgcdN=1myFmgcdN=1
15 difeq1 x=yxm=ym
16 15 raleqdv x=ynxmFmgcdFn=1nymFmgcdFn=1
17 16 raleqbi1dv x=ymxnxmFmgcdFn=1mynymFmgcdFn=1
18 13 14 17 3anbi123d x=yxNF:mxFmgcdN=1mxnxmFmgcdFn=1yNF:myFmgcdN=1mynymFmgcdFn=1
19 prodeq1 x=ymxFm=myFm
20 19 oveq1d x=ymxFmgcdN=myFmgcdN
21 20 eqeq1d x=ymxFmgcdN=1myFmgcdN=1
22 18 21 imbi12d x=yxNF:mxFmgcdN=1mxnxmFmgcdFn=1mxFmgcdN=1yNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1
23 sseq1 x=yzxyz
24 23 3anbi1d x=yzxNF:yzNF:
25 raleq x=yzmxFmgcdN=1myzFmgcdN=1
26 difeq1 x=yzxm=yzm
27 26 raleqdv x=yznxmFmgcdFn=1nyzmFmgcdFn=1
28 27 raleqbi1dv x=yzmxnxmFmgcdFn=1myznyzmFmgcdFn=1
29 24 25 28 3anbi123d x=yzxNF:mxFmgcdN=1mxnxmFmgcdFn=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1
30 prodeq1 x=yzmxFm=myzFm
31 30 oveq1d x=yzmxFmgcdN=myzFmgcdN
32 31 eqeq1d x=yzmxFmgcdN=1myzFmgcdN=1
33 29 32 imbi12d x=yzxNF:mxFmgcdN=1mxnxmFmgcdFn=1mxFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1myzFmgcdN=1
34 sseq1 x=MxM
35 34 3anbi1d x=MxNF:MNF:
36 raleq x=MmxFmgcdN=1mMFmgcdN=1
37 difeq1 x=Mxm=Mm
38 37 raleqdv x=MnxmFmgcdFn=1nMmFmgcdFn=1
39 38 raleqbi1dv x=MmxnxmFmgcdFn=1mMnMmFmgcdFn=1
40 35 36 39 3anbi123d x=MxNF:mxFmgcdN=1mxnxmFmgcdFn=1MNF:mMFmgcdN=1mMnMmFmgcdFn=1
41 prodeq1 x=MmxFm=mMFm
42 41 oveq1d x=MmxFmgcdN=mMFmgcdN
43 42 eqeq1d x=MmxFmgcdN=1mMFmgcdN=1
44 40 43 imbi12d x=MxNF:mxFmgcdN=1mxnxmFmgcdFn=1mxFmgcdN=1MNF:mMFmgcdN=1mMnMmFmgcdFn=1mMFmgcdN=1
45 prod0 mFm=1
46 45 a1i NmFm=1
47 46 oveq1d NmFmgcdN=1gcdN
48 nnz NN
49 1gcd N1gcdN=1
50 48 49 syl N1gcdN=1
51 47 50 eqtrd NmFmgcdN=1
52 51 3ad2ant2 NF:mFmgcdN=1
53 52 3ad2ant1 NF:mFmgcdN=1mnmFmgcdFn=1mFmgcdN=1
54 nfv myzNF:yFin¬zy
55 nfcv _mFz
56 simprl yzNF:yFin¬zyyFin
57 unss yzyz
58 vex zV
59 58 snss zz
60 59 biimpri zz
61 60 adantl yzz
62 57 61 sylbir yzz
63 62 3ad2ant1 yzNF:z
64 63 adantr yzNF:yFin¬zyz
65 simprr yzNF:yFin¬zy¬zy
66 simpll3 yzNF:yFin¬zymyF:
67 simpl yzy
68 57 67 sylbir yzy
69 68 3ad2ant1 yzNF:y
70 69 adantr yzNF:yFin¬zyy
71 70 sselda yzNF:yFin¬zymym
72 66 71 ffvelcdmd yzNF:yFin¬zymyFm
73 72 nncnd yzNF:yFin¬zymyFm
74 fveq2 m=zFm=Fz
75 simpr yzF:F:
76 62 adantr yzF:z
77 75 76 ffvelcdmd yzF:Fz
78 77 3adant2 yzNF:Fz
79 78 adantr yzNF:yFin¬zyFz
80 79 nncnd yzNF:yFin¬zyFz
81 54 55 56 64 65 73 74 80 fprodsplitsn yzNF:yFin¬zymyzFm=myFmFz
82 81 oveq1d yzNF:yFin¬zymyzFmgcdN=myFmFzgcdN
83 56 72 fprodnncl yzNF:yFin¬zymyFm
84 83 nnzd yzNF:yFin¬zymyFm
85 79 nnzd yzNF:yFin¬zyFz
86 84 85 zmulcld yzNF:yFin¬zymyFmFz
87 48 3ad2ant2 yzNF:N
88 87 adantr yzNF:yFin¬zyN
89 86 88 gcdcomd yzNF:yFin¬zymyFmFzgcdN=NgcdmyFmFz
90 82 89 eqtrd yzNF:yFin¬zymyzFmgcdN=NgcdmyFmFz
91 90 ex yzNF:yFin¬zymyzFmgcdN=NgcdmyFmFz
92 91 3ad2ant1 yzNF:myzFmgcdN=1myznyzmFmgcdFn=1yFin¬zymyzFmgcdN=NgcdmyFmFz
93 92 com12 yFin¬zyyzNF:myzFmgcdN=1myznyzmFmgcdFn=1myzFmgcdN=NgcdmyFmFz
94 93 adantr yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1myzFmgcdN=NgcdmyFmFz
95 94 imp yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1myzFmgcdN=NgcdmyFmFz
96 simpl2 yzNF:yFin¬zyN
97 96 83 79 3jca yzNF:yFin¬zyNmyFmFz
98 97 ex yzNF:yFin¬zyNmyFmFz
99 98 3ad2ant1 yzNF:myzFmgcdN=1myznyzmFmgcdFn=1yFin¬zyNmyFmFz
100 99 com12 yFin¬zyyzNF:myzFmgcdN=1myznyzmFmgcdFn=1NmyFmFz
101 100 adantr yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1NmyFmFz
102 101 imp yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1NmyFmFz
103 88 84 gcdcomd yzNF:yFin¬zyNgcdmyFm=myFmgcdN
104 103 ex yzNF:yFin¬zyNgcdmyFm=myFmgcdN
105 104 3ad2ant1 yzNF:myzFmgcdN=1myznyzmFmgcdFn=1yFin¬zyNgcdmyFm=myFmgcdN
106 105 com12 yFin¬zyyzNF:myzFmgcdN=1myznyzmFmgcdFn=1NgcdmyFm=myFmgcdN
107 106 adantr yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1NgcdmyFm=myFmgcdN
108 107 imp yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1NgcdmyFm=myFmgcdN
109 68 a1i yFin¬zyyzy
110 idd yFin¬zyNN
111 idd yFin¬zyF:F:
112 109 110 111 3anim123d yFin¬zyyzNF:yNF:
113 ssun1 yyz
114 ssralv yyzmyzFmgcdN=1myFmgcdN=1
115 113 114 mp1i yFin¬zymyzFmgcdN=1myFmgcdN=1
116 ssralv yyzmyznyzmFmgcdFn=1mynyzmFmgcdFn=1
117 113 116 mp1i yFin¬zymyznyzmFmgcdFn=1mynyzmFmgcdFn=1
118 113 a1i yFin¬zymyyyz
119 118 ssdifd yFin¬zymyymyzm
120 ssralv ymyzmnyzmFmgcdFn=1nymFmgcdFn=1
121 119 120 syl yFin¬zymynyzmFmgcdFn=1nymFmgcdFn=1
122 121 ralimdva yFin¬zymynyzmFmgcdFn=1mynymFmgcdFn=1
123 117 122 syld yFin¬zymyznyzmFmgcdFn=1mynymFmgcdFn=1
124 112 115 123 3anim123d yFin¬zyyzNF:myzFmgcdN=1myznyzmFmgcdFn=1yNF:myFmgcdN=1mynymFmgcdFn=1
125 124 imim1d yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1myFmgcdN=1
126 125 imp31 yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1myFmgcdN=1
127 108 126 eqtrd yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1NgcdmyFm=1
128 rpmulgcd NmyFmFzNgcdmyFm=1NgcdmyFmFz=NgcdFz
129 102 127 128 syl2anc yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1NgcdmyFmFz=NgcdFz
130 vsnid zz
131 130 olci zyzz
132 elun zyzzyzz
133 131 132 mpbir zyz
134 74 oveq1d m=zFmgcdN=FzgcdN
135 134 eqeq1d m=zFmgcdN=1FzgcdN=1
136 135 rspcv zyzmyzFmgcdN=1FzgcdN=1
137 133 136 mp1i yzNF:myzFmgcdN=1FzgcdN=1
138 137 imp yzNF:myzFmgcdN=1FzgcdN=1
139 78 nnzd yzNF:Fz
140 87 139 gcdcomd yzNF:NgcdFz=FzgcdN
141 140 eqeq1d yzNF:NgcdFz=1FzgcdN=1
142 141 adantr yzNF:myzFmgcdN=1NgcdFz=1FzgcdN=1
143 138 142 mpbird yzNF:myzFmgcdN=1NgcdFz=1
144 143 3adant3 yzNF:myzFmgcdN=1myznyzmFmgcdFn=1NgcdFz=1
145 144 adantl yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1NgcdFz=1
146 95 129 145 3eqtrd yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1myzFmgcdN=1
147 146 exp31 yFin¬zyyNF:myFmgcdN=1mynymFmgcdFn=1myFmgcdN=1yzNF:myzFmgcdN=1myznyzmFmgcdFn=1myzFmgcdN=1
148 11 22 33 44 53 147 findcard2s MFinMNF:mMFmgcdN=1mMnMmFmgcdFn=1mMFmgcdN=1
149 148 3expd MFinMNF:mMFmgcdN=1mMnMmFmgcdFn=1mMFmgcdN=1
150 149 3expd MFinMNF:mMFmgcdN=1mMnMmFmgcdFn=1mMFmgcdN=1
151 150 3imp MFinMNF:mMFmgcdN=1mMnMmFmgcdFn=1mMFmgcdN=1
152 151 3imp MFinMNF:mMFmgcdN=1mMnMmFmgcdFn=1mMFmgcdN=1