| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftmo.b |
|
| 2 |
|
cvmliftmo.y |
|
| 3 |
|
cvmliftmo.f |
|
| 4 |
|
cvmliftmo.k |
|
| 5 |
|
cvmliftmo.l |
|
| 6 |
|
cvmliftmo.o |
|
| 7 |
|
cvmliftmoi.m |
|
| 8 |
|
cvmliftmoi.n |
|
| 9 |
|
cvmliftmoi.g |
|
| 10 |
|
cvmliftmoi.p |
|
| 11 |
|
cvmliftmolem.1 |
|
| 12 |
2 1
|
cnf |
|
| 13 |
|
ffn |
|
| 14 |
7 12 13
|
3syl |
|
| 15 |
2 1
|
cnf |
|
| 16 |
|
ffn |
|
| 17 |
8 15 16
|
3syl |
|
| 18 |
|
inss1 |
|
| 19 |
3
|
adantr |
|
| 20 |
7 12
|
syl |
|
| 21 |
20
|
ffvelcdmda |
|
| 22 |
|
cvmcn |
|
| 23 |
|
eqid |
|
| 24 |
1 23
|
cnf |
|
| 25 |
3 22 24
|
3syl |
|
| 26 |
25
|
ffvelcdmda |
|
| 27 |
21 26
|
syldan |
|
| 28 |
11 23
|
cvmcov |
|
| 29 |
19 27 28
|
syl2anc |
|
| 30 |
|
n0 |
|
| 31 |
5
|
adantr |
|
| 32 |
7
|
adantr |
|
| 33 |
|
simprrr |
|
| 34 |
11
|
cvmsss |
|
| 35 |
33 34
|
syl |
|
| 36 |
3
|
adantr |
|
| 37 |
20
|
adantr |
|
| 38 |
|
simprll |
|
| 39 |
37 38
|
ffvelcdmd |
|
| 40 |
|
simprrl |
|
| 41 |
|
eqid |
|
| 42 |
11 1 41
|
cvmsiota |
|
| 43 |
36 33 39 40 42
|
syl13anc |
|
| 44 |
43
|
simpld |
|
| 45 |
35 44
|
sseldd |
|
| 46 |
|
cnima |
|
| 47 |
32 45 46
|
syl2anc |
|
| 48 |
43
|
simprd |
|
| 49 |
|
elpreima |
|
| 50 |
37 13 49
|
3syl |
|
| 51 |
38 48 50
|
mpbir2and |
|
| 52 |
|
nlly2i |
|
| 53 |
31 47 51 52
|
syl3anc |
|
| 54 |
|
simprr1 |
|
| 55 |
|
simplrr |
|
| 56 |
55
|
adantl |
|
| 57 |
44
|
adantrr |
|
| 58 |
|
simplll |
|
| 59 |
58
|
ad2antll |
|
| 60 |
59
|
elpwid |
|
| 61 |
|
simplr3 |
|
| 62 |
61
|
ad2antll |
|
| 63 |
|
simplr2 |
|
| 64 |
63
|
ad2antll |
|
| 65 |
|
simprr1 |
|
| 66 |
65
|
adantl |
|
| 67 |
66
|
adantrrr |
|
| 68 |
64 67
|
sseldd |
|
| 69 |
|
simprrr |
|
| 70 |
64 69
|
sseldd |
|
| 71 |
40
|
adantrr |
|
| 72 |
1 2 3 4 5 6 7 8 9 10 11 56 57 60 62 68 68 70 71
|
cvmliftmolem1 |
|
| 73 |
1 2 3 4 5 6 7 8 9 10 11 56 57 60 62 68 70 68 71
|
cvmliftmolem1 |
|
| 74 |
72 73
|
impbid |
|
| 75 |
74
|
anassrs |
|
| 76 |
75
|
anassrs |
|
| 77 |
76
|
ralrimiva |
|
| 78 |
54 77
|
jca |
|
| 79 |
78
|
expr |
|
| 80 |
79
|
anassrs |
|
| 81 |
80
|
reximdva |
|
| 82 |
81
|
rexlimdva |
|
| 83 |
53 82
|
mpd |
|
| 84 |
83
|
anassrs |
|
| 85 |
84
|
expr |
|
| 86 |
85
|
exlimdv |
|
| 87 |
30 86
|
biimtrid |
|
| 88 |
87
|
expimpd |
|
| 89 |
88
|
anassrs |
|
| 90 |
89
|
rexlimdva |
|
| 91 |
29 90
|
mpd |
|
| 92 |
91
|
ralrimiva |
|
| 93 |
|
conntop |
|
| 94 |
4 93
|
syl |
|
| 95 |
|
fndmin |
|
| 96 |
14 17 95
|
syl2anc |
|
| 97 |
|
ssrab2 |
|
| 98 |
96 97
|
eqsstrdi |
|
| 99 |
2
|
isclo |
|
| 100 |
94 98 99
|
syl2anc |
|
| 101 |
92 100
|
mpbird |
|
| 102 |
18 101
|
sselid |
|
| 103 |
|
fveq2 |
|
| 104 |
|
fveq2 |
|
| 105 |
103 104
|
eqeq12d |
|
| 106 |
105
|
elrab |
|
| 107 |
6 10 106
|
sylanbrc |
|
| 108 |
107 96
|
eleqtrrd |
|
| 109 |
108
|
ne0d |
|
| 110 |
|
inss2 |
|
| 111 |
110 101
|
sselid |
|
| 112 |
2 4 102 109 111
|
connclo |
|
| 113 |
112 96
|
eqtr3d |
|
| 114 |
|
rabid2 |
|
| 115 |
113 114
|
sylib |
|
| 116 |
115
|
r19.21bi |
|
| 117 |
14 17 116
|
eqfnfvd |
|