Metamath Proof Explorer


Theorem cycpmco2f1

Description: The word U used in cycpmco2 is injective, so it can represent a cycle and form a cyclic permutation ( MU ) . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M=toCycD
cycpmco2.s S=SymGrpD
cycpmco2.d φDV
cycpmco2.w φWdomM
cycpmco2.i φIDranW
cycpmco2.j φJranW
cycpmco2.e E=W-1J+1
cycpmco2.1 U=WspliceEE⟨“I”⟩
Assertion cycpmco2f1 φU:domU1-1D

Proof

Step Hyp Ref Expression
1 cycpmco2.c M=toCycD
2 cycpmco2.s S=SymGrpD
3 cycpmco2.d φDV
4 cycpmco2.w φWdomM
5 cycpmco2.i φIDranW
6 cycpmco2.j φJranW
7 cycpmco2.e E=W-1J+1
8 cycpmco2.1 U=WspliceEE⟨“I”⟩
9 ssrab2 wWordD|w:domw1-1DWordD
10 eqid BaseS=BaseS
11 1 2 10 tocycf DVM:wWordD|w:domw1-1DBaseS
12 3 11 syl φM:wWordD|w:domw1-1DBaseS
13 12 fdmd φdomM=wWordD|w:domw1-1D
14 4 13 eleqtrd φWwWordD|w:domw1-1D
15 9 14 sselid φWWordD
16 pfxcl WWordDWprefixEWordD
17 15 16 syl φWprefixEWordD
18 5 eldifad φID
19 18 s1cld φ⟨“I”⟩WordD
20 ccatcl WprefixEWordD⟨“I”⟩WordDWprefixE++⟨“I”⟩WordD
21 17 19 20 syl2anc φWprefixE++⟨“I”⟩WordD
22 swrdcl WWordDWsubstrEWWordD
23 15 22 syl φWsubstrEWWordD
24 id w=Ww=W
25 dmeq w=Wdomw=domW
26 eqidd w=WD=D
27 24 25 26 f1eq123d w=Ww:domw1-1DW:domW1-1D
28 27 elrab WwWordD|w:domw1-1DWWordDW:domW1-1D
29 14 28 sylib φWWordDW:domW1-1D
30 29 simprd φW:domW1-1D
31 f1cnv W:domW1-1DW-1:ranW1-1 ontodomW
32 f1of W-1:ranW1-1 ontodomWW-1:ranWdomW
33 30 31 32 3syl φW-1:ranWdomW
34 33 6 ffvelcdmd φW-1JdomW
35 wrddm WWordDdomW=0..^W
36 15 35 syl φdomW=0..^W
37 34 36 eleqtrd φW-1J0..^W
38 fzofzp1 W-1J0..^WW-1J+10W
39 37 38 syl φW-1J+10W
40 7 39 eqeltrid φE0W
41 15 30 40 pfxf1 φWprefixE:domWprefixE1-1D
42 18 s1f1 φ⟨“I”⟩:dom⟨“I”⟩1-1D
43 s1rn IDran⟨“I”⟩=I
44 18 43 syl φran⟨“I”⟩=I
45 44 ineq2d φranWprefixEran⟨“I”⟩=ranWprefixEI
46 pfxrn2 WWordDE0WranWprefixEranW
47 15 40 46 syl2anc φranWprefixEranW
48 47 ssrind φranWprefixEIranWI
49 5 eldifbd φ¬IranW
50 disjsn ranWI=¬IranW
51 49 50 sylibr φranWI=
52 48 51 sseqtrd φranWprefixEI
53 ss0 ranWprefixEIranWprefixEI=
54 52 53 syl φranWprefixEI=
55 45 54 eqtrd φranWprefixEran⟨“I”⟩=
56 3 17 19 41 42 55 ccatf1 φWprefixE++⟨“I”⟩:domWprefixE++⟨“I”⟩1-1D
57 lencl WWordDW0
58 nn0fz0 W0W0W
59 58 biimpi W0W0W
60 15 57 59 3syl φW0W
61 15 40 60 30 swrdf1 φWsubstrEW:domWsubstrEW1-1D
62 ccatrn WprefixEWordD⟨“I”⟩WordDranWprefixE++⟨“I”⟩=ranWprefixEran⟨“I”⟩
63 17 19 62 syl2anc φranWprefixE++⟨“I”⟩=ranWprefixEran⟨“I”⟩
64 63 ineq1d φranWprefixE++⟨“I”⟩ranWsubstrEW=ranWprefixEran⟨“I”⟩ranWsubstrEW
65 indir ranWprefixEran⟨“I”⟩ranWsubstrEW=ranWprefixEranWsubstrEWran⟨“I”⟩ranWsubstrEW
66 64 65 eqtrdi φranWprefixE++⟨“I”⟩ranWsubstrEW=ranWprefixEranWsubstrEWran⟨“I”⟩ranWsubstrEW
67 fz0ssnn0 0W0
68 67 40 sselid φE0
69 pfxval WWordDE0WprefixE=Wsubstr0E
70 15 68 69 syl2anc φWprefixE=Wsubstr0E
71 70 rneqd φranWprefixE=ranWsubstr0E
72 71 ineq1d φranWprefixEranWsubstrEW=ranWsubstr0EranWsubstrEW
73 0elfz E000E
74 68 73 syl φ00E
75 elfzuz3 E0WWE
76 eluzfz1 WEEEW
77 40 75 76 3syl φEEW
78 eluzfz2 WEWEW
79 40 75 78 3syl φWEW
80 15 74 40 30 77 79 swrdrndisj φranWsubstr0EranWsubstrEW=
81 72 80 eqtrd φranWprefixEranWsubstrEW=
82 incom ran⟨“I”⟩ranWsubstrEW=ranWsubstrEWran⟨“I”⟩
83 44 ineq2d φranWsubstrEWran⟨“I”⟩=ranWsubstrEWI
84 swrdrn2 WWordDE0WW0WranWsubstrEWranW
85 15 40 60 84 syl3anc φranWsubstrEWranW
86 85 ssrind φranWsubstrEWIranWI
87 86 51 sseqtrd φranWsubstrEWI
88 ss0 ranWsubstrEWIranWsubstrEWI=
89 87 88 syl φranWsubstrEWI=
90 83 89 eqtrd φranWsubstrEWran⟨“I”⟩=
91 82 90 eqtrid φran⟨“I”⟩ranWsubstrEW=
92 81 91 uneq12d φranWprefixEranWsubstrEWran⟨“I”⟩ranWsubstrEW=
93 unidm =
94 93 a1i φ=
95 66 92 94 3eqtrd φranWprefixE++⟨“I”⟩ranWsubstrEW=
96 3 21 23 56 61 95 ccatf1 φWprefixE++⟨“I”⟩++WsubstrEW:domWprefixE++⟨“I”⟩++WsubstrEW1-1D
97 ovexd φW-1J+1V
98 7 97 eqeltrid φEV
99 splval WdomMEVEV⟨“I”⟩WordDWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
100 4 98 98 19 99 syl13anc φWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
101 8 100 eqtrid φU=WprefixE++⟨“I”⟩++WsubstrEW
102 101 dmeqd φdomU=domWprefixE++⟨“I”⟩++WsubstrEW
103 eqidd φD=D
104 101 102 103 f1eq123d φU:domU1-1DWprefixE++⟨“I”⟩++WsubstrEW:domWprefixE++⟨“I”⟩++WsubstrEW1-1D
105 96 104 mpbird φU:domU1-1D