Metamath Proof Explorer


Theorem dfrdg2

Description: Alternate definition of the recursive function generator when I is a set. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion dfrdg2 IVrecFI=f|xOnfFnxyxfy=ify=IifLimyfyFfy

Proof

Step Hyp Ref Expression
1 rdgeq2 i=IrecFi=recFI
2 ifeq1 i=Iify=iifLimyfyFfy=ify=IifLimyfyFfy
3 2 eqeq2d i=Ify=ify=iifLimyfyFfyfy=ify=IifLimyfyFfy
4 3 ralbidv i=Iyxfy=ify=iifLimyfyFfyyxfy=ify=IifLimyfyFfy
5 4 anbi2d i=IfFnxyxfy=ify=iifLimyfyFfyfFnxyxfy=ify=IifLimyfyFfy
6 5 rexbidv i=IxOnfFnxyxfy=ify=iifLimyfyFfyxOnfFnxyxfy=ify=IifLimyfyFfy
7 6 abbidv i=If|xOnfFnxyxfy=ify=iifLimyfyFfy=f|xOnfFnxyxfy=ify=IifLimyfyFfy
8 7 unieqd i=If|xOnfFnxyxfy=ify=iifLimyfyFfy=f|xOnfFnxyxfy=ify=IifLimyfyFfy
9 1 8 eqeq12d i=IrecFi=f|xOnfFnxyxfy=ify=iifLimyfyFfyrecFI=f|xOnfFnxyxfy=ify=IifLimyfyFfy
10 df-rdg recFi=recsgVifg=iifLimdomgrangFgdomg
11 dfrecs3 recsgVifg=iifLimdomgrangFgdomg=f|xOnfFnxyxfy=gVifg=iifLimdomgrangFgdomgfy
12 vex fV
13 12 resex fyV
14 eqeq1 g=fyg=fy=
15 relres Relfy
16 reldm0 Relfyfy=domfy=
17 15 16 ax-mp fy=domfy=
18 14 17 bitrdi g=fyg=domfy=
19 dmeq g=fydomg=domfy
20 limeq domg=domfyLimdomgLimdomfy
21 19 20 syl g=fyLimdomgLimdomfy
22 rneq g=fyrang=ranfy
23 df-ima fy=ranfy
24 22 23 eqtr4di g=fyrang=fy
25 24 unieqd g=fyrang=fy
26 id g=fyg=fy
27 19 unieqd g=fydomg=domfy
28 26 27 fveq12d g=fygdomg=fydomfy
29 28 fveq2d g=fyFgdomg=Ffydomfy
30 21 25 29 ifbieq12d g=fyifLimdomgrangFgdomg=ifLimdomfyfyFfydomfy
31 18 30 ifbieq2d g=fyifg=iifLimdomgrangFgdomg=ifdomfy=iifLimdomfyfyFfydomfy
32 eqid gVifg=iifLimdomgrangFgdomg=gVifg=iifLimdomgrangFgdomg
33 vex iV
34 imaexg fVfyV
35 12 34 ax-mp fyV
36 35 uniex fyV
37 fvex FfydomfyV
38 36 37 ifex ifLimdomfyfyFfydomfyV
39 33 38 ifex ifdomfy=iifLimdomfyfyFfydomfyV
40 31 32 39 fvmpt fyVgVifg=iifLimdomgrangFgdomgfy=ifdomfy=iifLimdomfyfyFfydomfy
41 13 40 ax-mp gVifg=iifLimdomgrangFgdomgfy=ifdomfy=iifLimdomfyfyFfydomfy
42 dmres domfy=ydomf
43 onelss xOnyxyx
44 43 imp xOnyxyx
45 44 3adant2 xOnfFnxyxyx
46 fndm fFnxdomf=x
47 46 3ad2ant2 xOnfFnxyxdomf=x
48 45 47 sseqtrrd xOnfFnxyxydomf
49 df-ss ydomfydomf=y
50 48 49 sylib xOnfFnxyxydomf=y
51 42 50 eqtrid xOnfFnxyxdomfy=y
52 eqeq1 domfy=ydomfy=y=
53 limeq domfy=yLimdomfyLimy
54 unieq domfy=ydomfy=y
55 54 fveq2d domfy=yfydomfy=fyy
56 55 fveq2d domfy=yFfydomfy=Ffyy
57 53 56 ifbieq2d domfy=yifLimdomfyfyFfydomfy=ifLimyfyFfyy
58 52 57 ifbieq2d domfy=yifdomfy=iifLimdomfyfyFfydomfy=ify=iifLimyfyFfyy
59 onelon xOnyxyOn
60 eloni yOnOrdy
61 59 60 syl xOnyxOrdy
62 61 3adant2 xOnfFnxyxOrdy
63 ordzsl Ordyy=zOny=suczLimy
64 iftrue y=ify=iifLimyfyFfyy=i
65 iftrue y=ify=iifLimyfyFfy=i
66 64 65 eqtr4d y=ify=iifLimyfyFfyy=ify=iifLimyfyFfy
67 vex zV
68 67 sucid zsucz
69 fvres zsuczfsuczz=fz
70 68 69 ax-mp fsuczz=fz
71 eloni zOnOrdz
72 ordunisuc Ordzsucz=z
73 71 72 syl zOnsucz=z
74 73 fveq2d zOnfsuczsucz=fsuczz
75 73 fveq2d zOnfsucz=fz
76 70 74 75 3eqtr4a zOnfsuczsucz=fsucz
77 76 fveq2d zOnFfsuczsucz=Ffsucz
78 nsuceq0 sucz
79 78 neii ¬sucz=
80 79 iffalsei ifsucz=iifLimsuczfyFfsuczsucz=ifLimsuczfyFfsuczsucz
81 nlimsucg zV¬Limsucz
82 iffalse ¬LimsuczifLimsuczfyFfsuczsucz=Ffsuczsucz
83 67 81 82 mp2b ifLimsuczfyFfsuczsucz=Ffsuczsucz
84 80 83 eqtri ifsucz=iifLimsuczfyFfsuczsucz=Ffsuczsucz
85 79 iffalsei ifsucz=iifLimsuczfyFfsucz=ifLimsuczfyFfsucz
86 iffalse ¬LimsuczifLimsuczfyFfsucz=Ffsucz
87 67 81 86 mp2b ifLimsuczfyFfsucz=Ffsucz
88 85 87 eqtri ifsucz=iifLimsuczfyFfsucz=Ffsucz
89 77 84 88 3eqtr4g zOnifsucz=iifLimsuczfyFfsuczsucz=ifsucz=iifLimsuczfyFfsucz
90 eqeq1 y=suczy=sucz=
91 limeq y=suczLimyLimsucz
92 reseq2 y=suczfy=fsucz
93 unieq y=suczy=sucz
94 92 93 fveq12d y=suczfyy=fsuczsucz
95 94 fveq2d y=suczFfyy=Ffsuczsucz
96 91 95 ifbieq2d y=suczifLimyfyFfyy=ifLimsuczfyFfsuczsucz
97 90 96 ifbieq2d y=suczify=iifLimyfyFfyy=ifsucz=iifLimsuczfyFfsuczsucz
98 93 fveq2d y=suczfy=fsucz
99 98 fveq2d y=suczFfy=Ffsucz
100 91 99 ifbieq2d y=suczifLimyfyFfy=ifLimsuczfyFfsucz
101 90 100 ifbieq2d y=suczify=iifLimyfyFfy=ifsucz=iifLimsuczfyFfsucz
102 97 101 eqeq12d y=suczify=iifLimyfyFfyy=ify=iifLimyfyFfyifsucz=iifLimsuczfyFfsuczsucz=ifsucz=iifLimsuczfyFfsucz
103 89 102 syl5ibrcom zOny=suczify=iifLimyfyFfyy=ify=iifLimyfyFfy
104 103 rexlimiv zOny=suczify=iifLimyfyFfyy=ify=iifLimyfyFfy
105 iftrue LimyifLimyfyFfyy=fy
106 df-lim LimyOrdyyy=y
107 106 simp2bi Limyy
108 107 neneqd Limy¬y=
109 108 iffalsed Limyify=iifLimyfyFfyy=ifLimyfyFfyy
110 iftrue LimyifLimyfyFfy=fy
111 105 109 110 3eqtr4d Limyify=iifLimyfyFfyy=ifLimyfyFfy
112 108 iffalsed Limyify=iifLimyfyFfy=ifLimyfyFfy
113 111 112 eqtr4d Limyify=iifLimyfyFfyy=ify=iifLimyfyFfy
114 66 104 113 3jaoi y=zOny=suczLimyify=iifLimyfyFfyy=ify=iifLimyfyFfy
115 63 114 sylbi Ordyify=iifLimyfyFfyy=ify=iifLimyfyFfy
116 62 115 syl xOnfFnxyxify=iifLimyfyFfyy=ify=iifLimyfyFfy
117 58 116 sylan9eqr xOnfFnxyxdomfy=yifdomfy=iifLimdomfyfyFfydomfy=ify=iifLimyfyFfy
118 51 117 mpdan xOnfFnxyxifdomfy=iifLimdomfyfyFfydomfy=ify=iifLimyfyFfy
119 41 118 eqtrid xOnfFnxyxgVifg=iifLimdomgrangFgdomgfy=ify=iifLimyfyFfy
120 119 eqeq2d xOnfFnxyxfy=gVifg=iifLimdomgrangFgdomgfyfy=ify=iifLimyfyFfy
121 120 3expa xOnfFnxyxfy=gVifg=iifLimdomgrangFgdomgfyfy=ify=iifLimyfyFfy
122 121 ralbidva xOnfFnxyxfy=gVifg=iifLimdomgrangFgdomgfyyxfy=ify=iifLimyfyFfy
123 122 pm5.32da xOnfFnxyxfy=gVifg=iifLimdomgrangFgdomgfyfFnxyxfy=ify=iifLimyfyFfy
124 123 rexbiia xOnfFnxyxfy=gVifg=iifLimdomgrangFgdomgfyxOnfFnxyxfy=ify=iifLimyfyFfy
125 124 abbii f|xOnfFnxyxfy=gVifg=iifLimdomgrangFgdomgfy=f|xOnfFnxyxfy=ify=iifLimyfyFfy
126 125 unieqi f|xOnfFnxyxfy=gVifg=iifLimdomgrangFgdomgfy=f|xOnfFnxyxfy=ify=iifLimyfyFfy
127 10 11 126 3eqtri recFi=f|xOnfFnxyxfy=ify=iifLimyfyFfy
128 9 127 vtoclg IVrecFI=f|xOnfFnxyxfy=ify=IifLimyfyFfy