Metamath Proof Explorer


Theorem dia2dimlem3

Description: Lemma for dia2dim . Define a translation D whose trace is atom V . Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem3.l ˙ = K
dia2dimlem3.j ˙ = join K
dia2dimlem3.m ˙ = meet K
dia2dimlem3.a A = Atoms K
dia2dimlem3.h H = LHyp K
dia2dimlem3.t T = LTrn K W
dia2dimlem3.r R = trL K W
dia2dimlem3.q Q = P ˙ U ˙ F P ˙ V
dia2dimlem3.k φ K HL W H
dia2dimlem3.u φ U A U ˙ W
dia2dimlem3.v φ V A V ˙ W
dia2dimlem3.p φ P A ¬ P ˙ W
dia2dimlem3.f φ F T F P P
dia2dimlem3.rf φ R F ˙ U ˙ V
dia2dimlem3.uv φ U V
dia2dimlem3.ru φ R F U
dia2dimlem3.rv φ R F V
dia2dimlem3.d φ D T
dia2dimlem3.dv φ D Q = F P
Assertion dia2dimlem3 φ R D = V

Proof

Step Hyp Ref Expression
1 dia2dimlem3.l ˙ = K
2 dia2dimlem3.j ˙ = join K
3 dia2dimlem3.m ˙ = meet K
4 dia2dimlem3.a A = Atoms K
5 dia2dimlem3.h H = LHyp K
6 dia2dimlem3.t T = LTrn K W
7 dia2dimlem3.r R = trL K W
8 dia2dimlem3.q Q = P ˙ U ˙ F P ˙ V
9 dia2dimlem3.k φ K HL W H
10 dia2dimlem3.u φ U A U ˙ W
11 dia2dimlem3.v φ V A V ˙ W
12 dia2dimlem3.p φ P A ¬ P ˙ W
13 dia2dimlem3.f φ F T F P P
14 dia2dimlem3.rf φ R F ˙ U ˙ V
15 dia2dimlem3.uv φ U V
16 dia2dimlem3.ru φ R F U
17 dia2dimlem3.rv φ R F V
18 dia2dimlem3.d φ D T
19 dia2dimlem3.dv φ D Q = F P
20 9 simpld φ K HL
21 13 simpld φ F T
22 1 4 5 6 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
23 9 21 12 22 syl3anc φ F P A ¬ F P ˙ W
24 23 simpld φ F P A
25 11 simpld φ V A
26 1 2 4 hlatlej2 K HL F P A V A V ˙ F P ˙ V
27 20 24 25 26 syl3anc φ V ˙ F P ˙ V
28 20 hllatd φ K Lat
29 eqid Base K = Base K
30 29 4 atbase V A V Base K
31 25 30 syl φ V Base K
32 29 2 4 hlatjcl K HL F P A V A F P ˙ V Base K
33 20 24 25 32 syl3anc φ F P ˙ V Base K
34 1 4 5 6 7 trlat K HL W H P A ¬ P ˙ W F T F P P R F A
35 9 12 13 34 syl3anc φ R F A
36 10 simpld φ U A
37 29 2 4 hlatjcl K HL R F A U A R F ˙ U Base K
38 20 35 36 37 syl3anc φ R F ˙ U Base K
39 29 1 3 latmlem2 K Lat V Base K F P ˙ V Base K R F ˙ U Base K V ˙ F P ˙ V R F ˙ U ˙ V ˙ R F ˙ U ˙ F P ˙ V
40 28 31 33 38 39 syl13anc φ V ˙ F P ˙ V R F ˙ U ˙ V ˙ R F ˙ U ˙ F P ˙ V
41 27 40 mpd φ R F ˙ U ˙ V ˙ R F ˙ U ˙ F P ˙ V
42 2 4 hlatjcom K HL U A V A U ˙ V = V ˙ U
43 20 36 25 42 syl3anc φ U ˙ V = V ˙ U
44 14 43 breqtrd φ R F ˙ V ˙ U
45 1 2 4 hlatexch2 K HL R F A V A U A R F U R F ˙ V ˙ U V ˙ R F ˙ U
46 20 35 25 36 16 45 syl131anc φ R F ˙ V ˙ U V ˙ R F ˙ U
47 44 46 mpd φ V ˙ R F ˙ U
48 29 1 3 latleeqm2 K Lat V Base K R F ˙ U Base K V ˙ R F ˙ U R F ˙ U ˙ V = V
49 28 31 38 48 syl3anc φ V ˙ R F ˙ U R F ˙ U ˙ V = V
50 47 49 mpbid φ R F ˙ U ˙ V = V
51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dia2dimlem1 φ Q A ¬ Q ˙ W
52 1 2 3 4 5 6 7 trlval2 K HL W H D T Q A ¬ Q ˙ W R D = Q ˙ D Q ˙ W
53 9 18 51 52 syl3anc φ R D = Q ˙ D Q ˙ W
54 8 a1i φ Q = P ˙ U ˙ F P ˙ V
55 54 19 oveq12d φ Q ˙ D Q = P ˙ U ˙ F P ˙ V ˙ F P
56 12 simpld φ P A
57 29 2 4 hlatjcl K HL P A U A P ˙ U Base K
58 20 56 36 57 syl3anc φ P ˙ U Base K
59 1 2 4 hlatlej1 K HL F P A V A F P ˙ F P ˙ V
60 20 24 25 59 syl3anc φ F P ˙ F P ˙ V
61 29 1 2 3 4 atmod4i1 K HL F P A P ˙ U Base K F P ˙ V Base K F P ˙ F P ˙ V P ˙ U ˙ F P ˙ V ˙ F P = P ˙ U ˙ F P ˙ F P ˙ V
62 20 24 58 33 60 61 syl131anc φ P ˙ U ˙ F P ˙ V ˙ F P = P ˙ U ˙ F P ˙ F P ˙ V
63 2 4 hlatj32 K HL P A U A F P A P ˙ U ˙ F P = P ˙ F P ˙ U
64 20 56 36 24 63 syl13anc φ P ˙ U ˙ F P = P ˙ F P ˙ U
65 64 oveq1d φ P ˙ U ˙ F P ˙ F P ˙ V = P ˙ F P ˙ U ˙ F P ˙ V
66 55 62 65 3eqtrd φ Q ˙ D Q = P ˙ F P ˙ U ˙ F P ˙ V
67 66 oveq1d φ Q ˙ D Q ˙ W = P ˙ F P ˙ U ˙ F P ˙ V ˙ W
68 hlol K HL K OL
69 20 68 syl φ K OL
70 29 2 4 hlatjcl K HL P A F P A P ˙ F P Base K
71 20 56 24 70 syl3anc φ P ˙ F P Base K
72 29 4 atbase U A U Base K
73 36 72 syl φ U Base K
74 29 2 latjcl K Lat P ˙ F P Base K U Base K P ˙ F P ˙ U Base K
75 28 71 73 74 syl3anc φ P ˙ F P ˙ U Base K
76 9 simprd φ W H
77 29 5 lhpbase W H W Base K
78 76 77 syl φ W Base K
79 29 3 latm32 K OL P ˙ F P ˙ U Base K F P ˙ V Base K W Base K P ˙ F P ˙ U ˙ F P ˙ V ˙ W = P ˙ F P ˙ U ˙ W ˙ F P ˙ V
80 69 75 33 78 79 syl13anc φ P ˙ F P ˙ U ˙ F P ˙ V ˙ W = P ˙ F P ˙ U ˙ W ˙ F P ˙ V
81 1 2 3 4 5 6 7 trlval2 K HL W H F T P A ¬ P ˙ W R F = P ˙ F P ˙ W
82 9 21 12 81 syl3anc φ R F = P ˙ F P ˙ W
83 82 oveq1d φ R F ˙ U = P ˙ F P ˙ W ˙ U
84 10 simprd φ U ˙ W
85 29 1 2 3 4 atmod4i1 K HL U A P ˙ F P Base K W Base K U ˙ W P ˙ F P ˙ W ˙ U = P ˙ F P ˙ U ˙ W
86 20 36 71 78 84 85 syl131anc φ P ˙ F P ˙ W ˙ U = P ˙ F P ˙ U ˙ W
87 83 86 eqtr2d φ P ˙ F P ˙ U ˙ W = R F ˙ U
88 87 oveq1d φ P ˙ F P ˙ U ˙ W ˙ F P ˙ V = R F ˙ U ˙ F P ˙ V
89 67 80 88 3eqtrd φ Q ˙ D Q ˙ W = R F ˙ U ˙ F P ˙ V
90 53 89 eqtr2d φ R F ˙ U ˙ F P ˙ V = R D
91 41 50 90 3brtr3d φ V ˙ R D
92 hlatl K HL K AtLat
93 20 92 syl φ K AtLat
94 hlop K HL K OP
95 20 94 syl φ K OP
96 eqid 0. K = 0. K
97 eqid < K = < K
98 96 97 4 0ltat K OP V A 0. K < K V
99 95 25 98 syl2anc φ 0. K < K V
100 hlpos K HL K Poset
101 20 100 syl φ K Poset
102 29 96 op0cl K OP 0. K Base K
103 95 102 syl φ 0. K Base K
104 29 5 6 7 trlcl K HL W H D T R D Base K
105 9 18 104 syl2anc φ R D Base K
106 29 1 97 pltletr K Poset 0. K Base K V Base K R D Base K 0. K < K V V ˙ R D 0. K < K R D
107 101 103 31 105 106 syl13anc φ 0. K < K V V ˙ R D 0. K < K R D
108 99 91 107 mp2and φ 0. K < K R D
109 29 97 96 opltn0 K OP R D Base K 0. K < K R D R D 0. K
110 95 105 109 syl2anc φ 0. K < K R D R D 0. K
111 108 110 mpbid φ R D 0. K
112 111 neneqd φ ¬ R D = 0. K
113 96 4 5 6 7 trlator0 K HL W H D T R D A R D = 0. K
114 9 18 113 syl2anc φ R D A R D = 0. K
115 114 orcomd φ R D = 0. K R D A
116 115 ord φ ¬ R D = 0. K R D A
117 112 116 mpd φ R D A
118 1 4 atcmp K AtLat V A R D A V ˙ R D V = R D
119 93 25 117 118 syl3anc φ V ˙ R D V = R D
120 91 119 mpbid φ V = R D
121 120 eqcomd φ R D = V