Metamath Proof Explorer


Theorem dia2dimlem3

Description: Lemma for dia2dim . Define a translation D whose trace is atom V . Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem3.l ˙=K
dia2dimlem3.j ˙=joinK
dia2dimlem3.m ˙=meetK
dia2dimlem3.a A=AtomsK
dia2dimlem3.h H=LHypK
dia2dimlem3.t T=LTrnKW
dia2dimlem3.r R=trLKW
dia2dimlem3.q Q=P˙U˙FP˙V
dia2dimlem3.k φKHLWH
dia2dimlem3.u φUAU˙W
dia2dimlem3.v φVAV˙W
dia2dimlem3.p φPA¬P˙W
dia2dimlem3.f φFTFPP
dia2dimlem3.rf φRF˙U˙V
dia2dimlem3.uv φUV
dia2dimlem3.ru φRFU
dia2dimlem3.rv φRFV
dia2dimlem3.d φDT
dia2dimlem3.dv φDQ=FP
Assertion dia2dimlem3 φRD=V

Proof

Step Hyp Ref Expression
1 dia2dimlem3.l ˙=K
2 dia2dimlem3.j ˙=joinK
3 dia2dimlem3.m ˙=meetK
4 dia2dimlem3.a A=AtomsK
5 dia2dimlem3.h H=LHypK
6 dia2dimlem3.t T=LTrnKW
7 dia2dimlem3.r R=trLKW
8 dia2dimlem3.q Q=P˙U˙FP˙V
9 dia2dimlem3.k φKHLWH
10 dia2dimlem3.u φUAU˙W
11 dia2dimlem3.v φVAV˙W
12 dia2dimlem3.p φPA¬P˙W
13 dia2dimlem3.f φFTFPP
14 dia2dimlem3.rf φRF˙U˙V
15 dia2dimlem3.uv φUV
16 dia2dimlem3.ru φRFU
17 dia2dimlem3.rv φRFV
18 dia2dimlem3.d φDT
19 dia2dimlem3.dv φDQ=FP
20 9 simpld φKHL
21 13 simpld φFT
22 1 4 5 6 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
23 9 21 12 22 syl3anc φFPA¬FP˙W
24 23 simpld φFPA
25 11 simpld φVA
26 1 2 4 hlatlej2 KHLFPAVAV˙FP˙V
27 20 24 25 26 syl3anc φV˙FP˙V
28 20 hllatd φKLat
29 eqid BaseK=BaseK
30 29 4 atbase VAVBaseK
31 25 30 syl φVBaseK
32 29 2 4 hlatjcl KHLFPAVAFP˙VBaseK
33 20 24 25 32 syl3anc φFP˙VBaseK
34 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
35 9 12 13 34 syl3anc φRFA
36 10 simpld φUA
37 29 2 4 hlatjcl KHLRFAUARF˙UBaseK
38 20 35 36 37 syl3anc φRF˙UBaseK
39 29 1 3 latmlem2 KLatVBaseKFP˙VBaseKRF˙UBaseKV˙FP˙VRF˙U˙V˙RF˙U˙FP˙V
40 28 31 33 38 39 syl13anc φV˙FP˙VRF˙U˙V˙RF˙U˙FP˙V
41 27 40 mpd φRF˙U˙V˙RF˙U˙FP˙V
42 2 4 hlatjcom KHLUAVAU˙V=V˙U
43 20 36 25 42 syl3anc φU˙V=V˙U
44 14 43 breqtrd φRF˙V˙U
45 1 2 4 hlatexch2 KHLRFAVAUARFURF˙V˙UV˙RF˙U
46 20 35 25 36 16 45 syl131anc φRF˙V˙UV˙RF˙U
47 44 46 mpd φV˙RF˙U
48 29 1 3 latleeqm2 KLatVBaseKRF˙UBaseKV˙RF˙URF˙U˙V=V
49 28 31 38 48 syl3anc φV˙RF˙URF˙U˙V=V
50 47 49 mpbid φRF˙U˙V=V
51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dia2dimlem1 φQA¬Q˙W
52 1 2 3 4 5 6 7 trlval2 KHLWHDTQA¬Q˙WRD=Q˙DQ˙W
53 9 18 51 52 syl3anc φRD=Q˙DQ˙W
54 8 a1i φQ=P˙U˙FP˙V
55 54 19 oveq12d φQ˙DQ=P˙U˙FP˙V˙FP
56 12 simpld φPA
57 29 2 4 hlatjcl KHLPAUAP˙UBaseK
58 20 56 36 57 syl3anc φP˙UBaseK
59 1 2 4 hlatlej1 KHLFPAVAFP˙FP˙V
60 20 24 25 59 syl3anc φFP˙FP˙V
61 29 1 2 3 4 atmod4i1 KHLFPAP˙UBaseKFP˙VBaseKFP˙FP˙VP˙U˙FP˙V˙FP=P˙U˙FP˙FP˙V
62 20 24 58 33 60 61 syl131anc φP˙U˙FP˙V˙FP=P˙U˙FP˙FP˙V
63 2 4 hlatj32 KHLPAUAFPAP˙U˙FP=P˙FP˙U
64 20 56 36 24 63 syl13anc φP˙U˙FP=P˙FP˙U
65 64 oveq1d φP˙U˙FP˙FP˙V=P˙FP˙U˙FP˙V
66 55 62 65 3eqtrd φQ˙DQ=P˙FP˙U˙FP˙V
67 66 oveq1d φQ˙DQ˙W=P˙FP˙U˙FP˙V˙W
68 hlol KHLKOL
69 20 68 syl φKOL
70 29 2 4 hlatjcl KHLPAFPAP˙FPBaseK
71 20 56 24 70 syl3anc φP˙FPBaseK
72 29 4 atbase UAUBaseK
73 36 72 syl φUBaseK
74 29 2 latjcl KLatP˙FPBaseKUBaseKP˙FP˙UBaseK
75 28 71 73 74 syl3anc φP˙FP˙UBaseK
76 9 simprd φWH
77 29 5 lhpbase WHWBaseK
78 76 77 syl φWBaseK
79 29 3 latm32 KOLP˙FP˙UBaseKFP˙VBaseKWBaseKP˙FP˙U˙FP˙V˙W=P˙FP˙U˙W˙FP˙V
80 69 75 33 78 79 syl13anc φP˙FP˙U˙FP˙V˙W=P˙FP˙U˙W˙FP˙V
81 1 2 3 4 5 6 7 trlval2 KHLWHFTPA¬P˙WRF=P˙FP˙W
82 9 21 12 81 syl3anc φRF=P˙FP˙W
83 82 oveq1d φRF˙U=P˙FP˙W˙U
84 10 simprd φU˙W
85 29 1 2 3 4 atmod4i1 KHLUAP˙FPBaseKWBaseKU˙WP˙FP˙W˙U=P˙FP˙U˙W
86 20 36 71 78 84 85 syl131anc φP˙FP˙W˙U=P˙FP˙U˙W
87 83 86 eqtr2d φP˙FP˙U˙W=RF˙U
88 87 oveq1d φP˙FP˙U˙W˙FP˙V=RF˙U˙FP˙V
89 67 80 88 3eqtrd φQ˙DQ˙W=RF˙U˙FP˙V
90 53 89 eqtr2d φRF˙U˙FP˙V=RD
91 41 50 90 3brtr3d φV˙RD
92 hlatl KHLKAtLat
93 20 92 syl φKAtLat
94 hlop KHLKOP
95 20 94 syl φKOP
96 eqid 0.K=0.K
97 eqid <K=<K
98 96 97 4 0ltat KOPVA0.K<KV
99 95 25 98 syl2anc φ0.K<KV
100 hlpos KHLKPoset
101 20 100 syl φKPoset
102 29 96 op0cl KOP0.KBaseK
103 95 102 syl φ0.KBaseK
104 29 5 6 7 trlcl KHLWHDTRDBaseK
105 9 18 104 syl2anc φRDBaseK
106 29 1 97 pltletr KPoset0.KBaseKVBaseKRDBaseK0.K<KVV˙RD0.K<KRD
107 101 103 31 105 106 syl13anc φ0.K<KVV˙RD0.K<KRD
108 99 91 107 mp2and φ0.K<KRD
109 29 97 96 opltn0 KOPRDBaseK0.K<KRDRD0.K
110 95 105 109 syl2anc φ0.K<KRDRD0.K
111 108 110 mpbid φRD0.K
112 111 neneqd φ¬RD=0.K
113 96 4 5 6 7 trlator0 KHLWHDTRDARD=0.K
114 9 18 113 syl2anc φRDARD=0.K
115 114 orcomd φRD=0.KRDA
116 115 ord φ¬RD=0.KRDA
117 112 116 mpd φRDA
118 1 4 atcmp KAtLatVARDAV˙RDV=RD
119 93 25 117 118 syl3anc φV˙RDV=RD
120 91 119 mpbid φV=RD
121 120 eqcomd φRD=V