Metamath Proof Explorer


Theorem dihintcl

Description: The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014)

Ref Expression
Hypotheses dihintcl.h H=LHypK
dihintcl.i I=DIsoHKW
Assertion dihintcl KHLWHSranISSranI

Proof

Step Hyp Ref Expression
1 dihintcl.h H=LHypK
2 dihintcl.i I=DIsoHKW
3 eqid BaseK=BaseK
4 3 1 2 dihfn KHLWHIFnBaseK
5 3 1 2 dihdm KHLWHdomI=BaseK
6 5 fneq2d KHLWHIFndomIIFnBaseK
7 4 6 mpbird KHLWHIFndomI
8 7 adantr KHLWHSranISIFndomI
9 cnvimass I-1SdomI
10 fnssres IFndomII-1SdomIII-1SFnI-1S
11 8 9 10 sylancl KHLWHSranISII-1SFnI-1S
12 fniinfv II-1SFnI-1SyI-1SII-1Sy=ranII-1S
13 11 12 syl KHLWHSranISyI-1SII-1Sy=ranII-1S
14 df-ima II-1S=ranII-1S
15 4 adantr KHLWHSranISIFnBaseK
16 dffn4 IFnBaseKI:BaseKontoranI
17 15 16 sylib KHLWHSranISI:BaseKontoranI
18 simprl KHLWHSranISSranI
19 foimacnv I:BaseKontoranISranIII-1S=S
20 17 18 19 syl2anc KHLWHSranISII-1S=S
21 14 20 eqtr3id KHLWHSranISranII-1S=S
22 21 inteqd KHLWHSranISranII-1S=S
23 13 22 eqtrd KHLWHSranISyI-1SII-1Sy=S
24 simpl KHLWHSranISKHLWH
25 5 adantr KHLWHSranISdomI=BaseK
26 9 25 sseqtrid KHLWHSranISI-1SBaseK
27 simprr KHLWHSranISS
28 n0 SyyS
29 27 28 sylib KHLWHSranISyyS
30 18 sselda KHLWHSranISySyranI
31 25 fneq2d KHLWHSranISIFndomIIFnBaseK
32 15 31 mpbird KHLWHSranISIFndomI
33 32 adantr KHLWHSranISySIFndomI
34 fvelrnb IFndomIyranIxdomIIx=y
35 33 34 syl KHLWHSranISySyranIxdomIIx=y
36 30 35 mpbid KHLWHSranISySxdomIIx=y
37 fnfun IFnBaseKFunI
38 15 37 syl KHLWHSranISFunI
39 fvimacnv FunIxdomIIxSxI-1S
40 38 39 sylan KHLWHSranISxdomIIxSxI-1S
41 ne0i xI-1SI-1S
42 40 41 syl6bi KHLWHSranISxdomIIxSI-1S
43 42 ex KHLWHSranISxdomIIxSI-1S
44 eleq1 Ix=yIxSyS
45 44 biimprd Ix=yySIxS
46 45 imim1d Ix=yIxSI-1SySI-1S
47 43 46 syl9 KHLWHSranISIx=yxdomIySI-1S
48 47 com24 KHLWHSranISySxdomIIx=yI-1S
49 48 imp KHLWHSranISySxdomIIx=yI-1S
50 49 rexlimdv KHLWHSranISySxdomIIx=yI-1S
51 36 50 mpd KHLWHSranISySI-1S
52 29 51 exlimddv KHLWHSranISI-1S
53 eqid glbK=glbK
54 3 53 1 2 dihglb KHLWHI-1SBaseKI-1SIglbKI-1S=yI-1SIy
55 24 26 52 54 syl12anc KHLWHSranISIglbKI-1S=yI-1SIy
56 fvres yI-1SII-1Sy=Iy
57 56 iineq2i yI-1SII-1Sy=yI-1SIy
58 55 57 eqtr4di KHLWHSranISIglbKI-1S=yI-1SII-1Sy
59 hlclat KHLKCLat
60 59 ad2antrr KHLWHSranISKCLat
61 3 53 clatglbcl KCLatI-1SBaseKglbKI-1SBaseK
62 60 26 61 syl2anc KHLWHSranISglbKI-1SBaseK
63 3 1 2 dihcl KHLWHglbKI-1SBaseKIglbKI-1SranI
64 62 63 syldan KHLWHSranISIglbKI-1SranI
65 58 64 eqeltrrd KHLWHSranISyI-1SII-1SyranI
66 23 65 eqeltrrd KHLWHSranISSranI