Description: The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihintcl.h | |
|
dihintcl.i | |
||
Assertion | dihintcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihintcl.h | |
|
2 | dihintcl.i | |
|
3 | eqid | |
|
4 | 3 1 2 | dihfn | |
5 | 3 1 2 | dihdm | |
6 | 5 | fneq2d | |
7 | 4 6 | mpbird | |
8 | 7 | adantr | |
9 | cnvimass | |
|
10 | fnssres | |
|
11 | 8 9 10 | sylancl | |
12 | fniinfv | |
|
13 | 11 12 | syl | |
14 | df-ima | |
|
15 | 4 | adantr | |
16 | dffn4 | |
|
17 | 15 16 | sylib | |
18 | simprl | |
|
19 | foimacnv | |
|
20 | 17 18 19 | syl2anc | |
21 | 14 20 | eqtr3id | |
22 | 21 | inteqd | |
23 | 13 22 | eqtrd | |
24 | simpl | |
|
25 | 5 | adantr | |
26 | 9 25 | sseqtrid | |
27 | simprr | |
|
28 | n0 | |
|
29 | 27 28 | sylib | |
30 | 18 | sselda | |
31 | 25 | fneq2d | |
32 | 15 31 | mpbird | |
33 | 32 | adantr | |
34 | fvelrnb | |
|
35 | 33 34 | syl | |
36 | 30 35 | mpbid | |
37 | fnfun | |
|
38 | 15 37 | syl | |
39 | fvimacnv | |
|
40 | 38 39 | sylan | |
41 | ne0i | |
|
42 | 40 41 | syl6bi | |
43 | 42 | ex | |
44 | eleq1 | |
|
45 | 44 | biimprd | |
46 | 45 | imim1d | |
47 | 43 46 | syl9 | |
48 | 47 | com24 | |
49 | 48 | imp | |
50 | 49 | rexlimdv | |
51 | 36 50 | mpd | |
52 | 29 51 | exlimddv | |
53 | eqid | |
|
54 | 3 53 1 2 | dihglb | |
55 | 24 26 52 54 | syl12anc | |
56 | fvres | |
|
57 | 56 | iineq2i | |
58 | 55 57 | eqtr4di | |
59 | hlclat | |
|
60 | 59 | ad2antrr | |
61 | 3 53 | clatglbcl | |
62 | 60 26 61 | syl2anc | |
63 | 3 1 2 | dihcl | |
64 | 62 63 | syldan | |
65 | 58 64 | eqeltrrd | |
66 | 23 65 | eqeltrrd | |