| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihintcl.h |
|
| 2 |
|
dihintcl.i |
|
| 3 |
|
eqid |
|
| 4 |
3 1 2
|
dihfn |
|
| 5 |
3 1 2
|
dihdm |
|
| 6 |
5
|
fneq2d |
|
| 7 |
4 6
|
mpbird |
|
| 8 |
7
|
adantr |
|
| 9 |
|
cnvimass |
|
| 10 |
|
fnssres |
|
| 11 |
8 9 10
|
sylancl |
|
| 12 |
|
fniinfv |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
df-ima |
|
| 15 |
4
|
adantr |
|
| 16 |
|
dffn4 |
|
| 17 |
15 16
|
sylib |
|
| 18 |
|
simprl |
|
| 19 |
|
foimacnv |
|
| 20 |
17 18 19
|
syl2anc |
|
| 21 |
14 20
|
eqtr3id |
|
| 22 |
21
|
inteqd |
|
| 23 |
13 22
|
eqtrd |
|
| 24 |
|
simpl |
|
| 25 |
5
|
adantr |
|
| 26 |
9 25
|
sseqtrid |
|
| 27 |
|
simprr |
|
| 28 |
|
n0 |
|
| 29 |
27 28
|
sylib |
|
| 30 |
18
|
sselda |
|
| 31 |
25
|
fneq2d |
|
| 32 |
15 31
|
mpbird |
|
| 33 |
32
|
adantr |
|
| 34 |
|
fvelrnb |
|
| 35 |
33 34
|
syl |
|
| 36 |
30 35
|
mpbid |
|
| 37 |
|
fnfun |
|
| 38 |
15 37
|
syl |
|
| 39 |
|
fvimacnv |
|
| 40 |
38 39
|
sylan |
|
| 41 |
|
ne0i |
|
| 42 |
40 41
|
biimtrdi |
|
| 43 |
42
|
ex |
|
| 44 |
|
eleq1 |
|
| 45 |
44
|
biimprd |
|
| 46 |
45
|
imim1d |
|
| 47 |
43 46
|
syl9 |
|
| 48 |
47
|
com24 |
|
| 49 |
48
|
imp |
|
| 50 |
49
|
rexlimdv |
|
| 51 |
36 50
|
mpd |
|
| 52 |
29 51
|
exlimddv |
|
| 53 |
|
eqid |
|
| 54 |
3 53 1 2
|
dihglb |
|
| 55 |
24 26 52 54
|
syl12anc |
|
| 56 |
|
fvres |
|
| 57 |
56
|
iineq2i |
|
| 58 |
55 57
|
eqtr4di |
|
| 59 |
|
hlclat |
|
| 60 |
59
|
ad2antrr |
|
| 61 |
3 53
|
clatglbcl |
|
| 62 |
60 26 61
|
syl2anc |
|
| 63 |
3 1 2
|
dihcl |
|
| 64 |
62 63
|
syldan |
|
| 65 |
58 64
|
eqeltrrd |
|
| 66 |
23 65
|
eqeltrrd |
|