Metamath Proof Explorer


Theorem dochkr1OLDN

Description: A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 . (Contributed by NM, 2-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dochkr1OLD.h H=LHypK
dochkr1OLD.o ˙=ocHKW
dochkr1OLD.u U=DVecHKW
dochkr1OLD.v V=BaseU
dochkr1OLD.r R=ScalarU
dochkr1OLD.z 0˙=0R
dochkr1OLD.i 1˙=1R
dochkr1OLD.f F=LFnlU
dochkr1OLD.l L=LKerU
dochkr1OLD.k φKHLWH
dochkr1OLD.g φGF
dochkr1OLD.n φ˙˙LGV
Assertion dochkr1OLDN φx˙LGGx=1˙

Proof

Step Hyp Ref Expression
1 dochkr1OLD.h H=LHypK
2 dochkr1OLD.o ˙=ocHKW
3 dochkr1OLD.u U=DVecHKW
4 dochkr1OLD.v V=BaseU
5 dochkr1OLD.r R=ScalarU
6 dochkr1OLD.z 0˙=0R
7 dochkr1OLD.i 1˙=1R
8 dochkr1OLD.f F=LFnlU
9 dochkr1OLD.l L=LKerU
10 dochkr1OLD.k φKHLWH
11 dochkr1OLD.g φGF
12 dochkr1OLD.n φ˙˙LGV
13 eqid 0U=0U
14 eqid LSAtomsU=LSAtomsU
15 1 3 10 dvhlmod φULMod
16 1 2 3 4 14 8 9 10 11 dochkrsat2 φ˙˙LGV˙LGLSAtomsU
17 12 16 mpbid φ˙LGLSAtomsU
18 13 14 15 17 lsateln0 φz˙LGz0U
19 10 ad2antrr φz˙LGz0UKHLWH
20 11 ad2antrr φz˙LGz0UGF
21 eldifsn z˙LG0Uz˙LGz0U
22 21 biimpri z˙LGz0Uz˙LG0U
23 22 adantll φz˙LGz0Uz˙LG0U
24 1 2 3 4 5 6 13 8 9 19 20 23 dochfln0 φz˙LGz0UGz0˙
25 24 ex φz˙LGz0UGz0˙
26 25 reximdva φz˙LGz0Uz˙LGGz0˙
27 18 26 mpd φz˙LGGz0˙
28 4 8 9 15 11 lkrssv φLGV
29 eqid LSubSpU=LSubSpU
30 1 3 4 29 2 dochlss KHLWHLGV˙LGLSubSpU
31 10 28 30 syl2anc φ˙LGLSubSpU
32 15 31 jca φULMod˙LGLSubSpU
33 32 3ad2ant1 φz˙LGGz0˙ULMod˙LGLSubSpU
34 1 3 10 dvhlvec φULVec
35 34 3ad2ant1 φz˙LGGz0˙ULVec
36 5 lvecdrng ULVecRDivRing
37 35 36 syl φz˙LGGz0˙RDivRing
38 15 3ad2ant1 φz˙LGGz0˙ULMod
39 11 3ad2ant1 φz˙LGGz0˙GF
40 1 3 4 2 dochssv KHLWHLGV˙LGV
41 10 28 40 syl2anc φ˙LGV
42 41 sselda φz˙LGzV
43 42 3adant3 φz˙LGGz0˙zV
44 eqid BaseR=BaseR
45 5 44 4 8 lflcl ULModGFzVGzBaseR
46 38 39 43 45 syl3anc φz˙LGGz0˙GzBaseR
47 simp3 φz˙LGGz0˙Gz0˙
48 eqid invrR=invrR
49 44 6 48 drnginvrcl RDivRingGzBaseRGz0˙invrRGzBaseR
50 37 46 47 49 syl3anc φz˙LGGz0˙invrRGzBaseR
51 simp2 φz˙LGGz0˙z˙LG
52 eqid U=U
53 5 52 44 29 lssvscl ULMod˙LGLSubSpUinvrRGzBaseRz˙LGinvrRGzUz˙LG
54 33 50 51 53 syl12anc φz˙LGGz0˙invrRGzUz˙LG
55 eqid R=R
56 5 44 55 4 52 8 lflmul ULModGFinvrRGzBaseRzVGinvrRGzUz=invrRGzRGz
57 38 39 50 43 56 syl112anc φz˙LGGz0˙GinvrRGzUz=invrRGzRGz
58 44 6 55 7 48 drnginvrl RDivRingGzBaseRGz0˙invrRGzRGz=1˙
59 37 46 47 58 syl3anc φz˙LGGz0˙invrRGzRGz=1˙
60 57 59 eqtrd φz˙LGGz0˙GinvrRGzUz=1˙
61 fveqeq2 x=invrRGzUzGx=1˙GinvrRGzUz=1˙
62 61 rspcev invrRGzUz˙LGGinvrRGzUz=1˙x˙LGGx=1˙
63 54 60 62 syl2anc φz˙LGGz0˙x˙LGGx=1˙
64 63 rexlimdv3a φz˙LGGz0˙x˙LGGx=1˙
65 27 64 mpd φx˙LGGx=1˙