Metamath Proof Explorer


Theorem dochsatshp

Description: The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 27-Jul-2014) (Revised by Mario Carneiro, 1-Oct-2014)

Ref Expression
Hypotheses dochsatshp.h H=LHypK
dochsatshp.u U=DVecHKW
dochsatshp.o ˙=ocHKW
dochsatshp.a A=LSAtomsU
dochsatshp.y Y=LSHypU
dochsatshp.k φKHLWH
dochsatshp.q φQA
Assertion dochsatshp φ˙QY

Proof

Step Hyp Ref Expression
1 dochsatshp.h H=LHypK
2 dochsatshp.u U=DVecHKW
3 dochsatshp.o ˙=ocHKW
4 dochsatshp.a A=LSAtomsU
5 dochsatshp.y Y=LSHypU
6 dochsatshp.k φKHLWH
7 dochsatshp.q φQA
8 eqid BaseU=BaseU
9 1 2 6 dvhlmod φULMod
10 8 4 9 7 lsatssv φQBaseU
11 eqid LSubSpU=LSubSpU
12 1 2 8 11 3 dochlss KHLWHQBaseU˙QLSubSpU
13 6 10 12 syl2anc φ˙QLSubSpU
14 eqid 0U=0U
15 14 4 9 7 lsatn0 φQ0U
16 1 2 3 8 14 doch0 KHLWH˙0U=BaseU
17 6 16 syl φ˙0U=BaseU
18 17 eqeq2d φ˙Q=˙0U˙Q=BaseU
19 eqid DIsoHKW=DIsoHKW
20 1 2 19 4 dih1dimat KHLWHQAQranDIsoHKW
21 6 7 20 syl2anc φQranDIsoHKW
22 1 19 2 14 dih0rn KHLWH0UranDIsoHKW
23 6 22 syl φ0UranDIsoHKW
24 1 19 3 6 21 23 doch11 φ˙Q=˙0UQ=0U
25 18 24 bitr3d φ˙Q=BaseUQ=0U
26 25 necon3bid φ˙QBaseUQ0U
27 15 26 mpbird φ˙QBaseU
28 eqid LSpanU=LSpanU
29 8 28 14 4 islsat ULModQAvBaseU0UQ=LSpanUv
30 9 29 syl φQAvBaseU0UQ=LSpanUv
31 7 30 mpbid φvBaseU0UQ=LSpanUv
32 eldifi vBaseU0UvBaseU
33 32 adantr vBaseU0UQ=LSpanUvvBaseU
34 33 a1i φvBaseU0UQ=LSpanUvvBaseU
35 11 28 lspid ULMod˙QLSubSpULSpanU˙Q=˙Q
36 9 13 35 syl2anc φLSpanU˙Q=˙Q
37 36 uneq1d φLSpanU˙QLSpanUv=˙QLSpanUv
38 37 fveq2d φLSpanULSpanU˙QLSpanUv=LSpanU˙QLSpanUv
39 38 adantr φvBaseU0UQ=LSpanUvLSpanULSpanU˙QLSpanUv=LSpanU˙QLSpanUv
40 9 adantr φvBaseU0UQ=LSpanUvULMod
41 8 11 lssss ˙QLSubSpU˙QBaseU
42 13 41 syl φ˙QBaseU
43 42 adantr φvBaseU0UQ=LSpanUv˙QBaseU
44 32 snssd vBaseU0UvBaseU
45 44 adantr vBaseU0UQ=LSpanUvvBaseU
46 45 adantl φvBaseU0UQ=LSpanUvvBaseU
47 8 28 lspun ULMod˙QBaseUvBaseULSpanU˙Qv=LSpanULSpanU˙QLSpanUv
48 40 43 46 47 syl3anc φvBaseU0UQ=LSpanUvLSpanU˙Qv=LSpanULSpanU˙QLSpanUv
49 uneq2 Q=LSpanUv˙QQ=˙QLSpanUv
50 49 fveq2d Q=LSpanUvLSpanU˙QQ=LSpanU˙QLSpanUv
51 50 adantl vBaseU0UQ=LSpanUvLSpanU˙QQ=LSpanU˙QLSpanUv
52 51 adantl φvBaseU0UQ=LSpanUvLSpanU˙QQ=LSpanU˙QLSpanUv
53 39 48 52 3eqtr4d φvBaseU0UQ=LSpanUvLSpanU˙Qv=LSpanU˙QQ
54 eqid joinHKW=joinHKW
55 eqid LSSumU=LSSumU
56 1 19 2 8 3 dochcl KHLWHQBaseU˙QranDIsoHKW
57 6 10 56 syl2anc φ˙QranDIsoHKW
58 1 19 54 2 55 4 6 57 7 dihjat2 φ˙QjoinHKWQ=˙QLSSumUQ
59 1 2 8 54 6 42 10 djhcom φ˙QjoinHKWQ=QjoinHKW˙Q
60 11 4 9 7 lsatlssel φQLSubSpU
61 11 28 55 lsmsp ULMod˙QLSubSpUQLSubSpU˙QLSSumUQ=LSpanU˙QQ
62 9 13 60 61 syl3anc φ˙QLSSumUQ=LSpanU˙QQ
63 58 59 62 3eqtr3rd φLSpanU˙QQ=QjoinHKW˙Q
64 1 2 8 3 54 djhexmid KHLWHQBaseUQjoinHKW˙Q=BaseU
65 6 10 64 syl2anc φQjoinHKW˙Q=BaseU
66 63 65 eqtrd φLSpanU˙QQ=BaseU
67 66 adantr φvBaseU0UQ=LSpanUvLSpanU˙QQ=BaseU
68 53 67 eqtrd φvBaseU0UQ=LSpanUvLSpanU˙Qv=BaseU
69 68 ex φvBaseU0UQ=LSpanUvLSpanU˙Qv=BaseU
70 34 69 jcad φvBaseU0UQ=LSpanUvvBaseULSpanU˙Qv=BaseU
71 70 reximdv2 φvBaseU0UQ=LSpanUvvBaseULSpanU˙Qv=BaseU
72 31 71 mpd φvBaseULSpanU˙Qv=BaseU
73 1 2 6 dvhlvec φULVec
74 8 28 11 5 islshp ULVec˙QY˙QLSubSpU˙QBaseUvBaseULSpanU˙Qv=BaseU
75 73 74 syl φ˙QY˙QLSubSpU˙QBaseUvBaseULSpanU˙Qv=BaseU
76 13 27 72 75 mpbir3and φ˙QY