Metamath Proof Explorer


Theorem dvdivbd

Description: A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvdivbd.s φS
dvdivbd.a φxXA
dvdivbd.adv φdxXAdSx=xXC
dvdivbd.c φxXC
dvdivbd.b φxXB
dvdivbd.u φU
dvdivbd.r φR
dvdivbd.t φT
dvdivbd.q φQ
dvdivbd.cbd φxXCU
dvdivbd.bbd φxXBR
dvdivbd.dbd φxXDT
dvdivbd.abd φxXAQ
dvdivbd.bdv φdxXBdSx=xXD
dvdivbd.d φxXD
dvdivbd.e φE+
dvdivbd.ele φxXEB
dvdivbd.f F=dxXABdSx
Assertion dvdivbd φbxXFxb

Proof

Step Hyp Ref Expression
1 dvdivbd.s φS
2 dvdivbd.a φxXA
3 dvdivbd.adv φdxXAdSx=xXC
4 dvdivbd.c φxXC
5 dvdivbd.b φxXB
6 dvdivbd.u φU
7 dvdivbd.r φR
8 dvdivbd.t φT
9 dvdivbd.q φQ
10 dvdivbd.cbd φxXCU
11 dvdivbd.bbd φxXBR
12 dvdivbd.dbd φxXDT
13 dvdivbd.abd φxXAQ
14 dvdivbd.bdv φdxXBdSx=xXD
15 dvdivbd.d φxXD
16 dvdivbd.e φE+
17 dvdivbd.ele φxXEB
18 dvdivbd.f F=dxXABdSx
19 6 7 remulcld φUR
20 8 9 remulcld φTQ
21 19 20 readdcld φUR+TQ
22 16 rpred φE
23 22 resqcld φE2
24 16 rpcnd φE
25 16 rpgt0d φ0<E
26 25 gt0ne0d φE0
27 2z 2
28 27 a1i φ2
29 24 26 28 expne0d φE20
30 21 23 29 redivcld φUR+TQE2
31 simpr φxXB=0B=0
32 31 abs00bd φxXB=0B=0
33 0red φxX0
34 22 adantr φxXE
35 5 abscld φxXB
36 25 adantr φxX0<E
37 17 r19.21bi φxXEB
38 33 34 35 36 37 ltletrd φxX0<B
39 38 gt0ne0d φxXB0
40 39 adantr φxXB=0B0
41 40 neneqd φxXB=0¬B=0
42 32 41 pm2.65da φxX¬B=0
43 42 neqned φxXB0
44 eldifsn B0BB0
45 5 43 44 sylanbrc φxXB0
46 1 2 4 3 45 15 14 dvmptdiv φdxXABdSx=xXCBDAB2
47 18 46 eqtrid φF=xXCBDAB2
48 4 5 mulcld φxXCB
49 15 2 mulcld φxXDA
50 48 49 subcld φxXCBDA
51 5 sqcld φxXB2
52 sqne0 BB20B0
53 5 52 syl φxXB20B0
54 43 53 mpbird φxXB20
55 50 51 54 divcld φxXCBDAB2
56 47 55 fvmpt2d φxXFx=CBDAB2
57 56 fveq2d φxXFx=CBDAB2
58 50 51 54 absdivd φxXCBDAB2=CBDAB2
59 50 abscld φxXCBDA
60 21 adantr φxXUR+TQ
61 16 adantr φxXE+
62 27 a1i φxX2
63 61 62 rpexpcld φxXE2+
64 51 abscld φxXB2
65 50 absge0d φxX0CBDA
66 48 abscld φxXCB
67 49 abscld φxXDA
68 66 67 readdcld φxXCB+DA
69 48 49 abs2dif2d φxXCBDACB+DA
70 19 adantr φxXUR
71 20 adantr φxXTQ
72 4 5 absmuld φxXCB=CB
73 4 abscld φxXC
74 6 adantr φxXU
75 7 adantr φxXR
76 4 absge0d φxX0C
77 5 absge0d φxX0B
78 73 74 35 75 76 77 10 11 lemul12ad φxXCBUR
79 72 78 eqbrtrd φxXCBUR
80 15 2 absmuld φxXDA=DA
81 15 abscld φxXD
82 8 adantr φxXT
83 2 abscld φxXA
84 9 adantr φxXQ
85 15 absge0d φxX0D
86 2 absge0d φxX0A
87 81 82 83 84 85 86 12 13 lemul12ad φxXDATQ
88 80 87 eqbrtrd φxXDATQ
89 66 67 70 71 79 88 le2addd φxXCB+DAUR+TQ
90 59 68 60 69 89 letrd φxXCBDAUR+TQ
91 2nn0 20
92 91 a1i φxX20
93 33 34 36 ltled φxX0E
94 leexp1a EB200EEBE2B2
95 34 35 92 93 37 94 syl32anc φxXE2B2
96 5 92 absexpd φxXB2=B2
97 95 96 breqtrrd φxXE2B2
98 59 60 63 64 65 90 97 lediv12ad φxXCBDAB2UR+TQE2
99 58 98 eqbrtrd φxXCBDAB2UR+TQE2
100 57 99 eqbrtrd φxXFxUR+TQE2
101 100 ralrimiva φxXFxUR+TQE2
102 brralrspcev UR+TQE2xXFxUR+TQE2bxXFxb
103 30 101 102 syl2anc φbxXFxb