Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq1d |
|
3 |
|
oveq1 |
|
4 |
2 3
|
oveq12d |
|
5 |
4
|
eqeq2d |
|
6 |
5
|
ralbidv |
|
7 |
6
|
cbvrexvw |
|
8 |
|
unitssre |
|
9 |
|
ssrexv |
|
10 |
8 9
|
mp1i |
|
11 |
7 10
|
syl5bi |
|
12 |
|
0re |
|
13 |
|
1xr |
|
14 |
|
elico2 |
|
15 |
12 13 14
|
mp2an |
|
16 |
|
simp1 |
|
17 |
|
1red |
|
18 |
17 16
|
resubcld |
|
19 |
|
1cnd |
|
20 |
16
|
recnd |
|
21 |
|
ltne |
|
22 |
21
|
3adant2 |
|
23 |
19 20 22
|
subne0d |
|
24 |
16 18 23
|
redivcld |
|
25 |
15 24
|
sylbi |
|
26 |
25
|
ad2antlr |
|
27 |
26
|
renegcld |
|
28 |
|
oveq2 |
|
29 |
28
|
oveq1d |
|
30 |
|
oveq1 |
|
31 |
29 30
|
oveq12d |
|
32 |
31
|
eqeq2d |
|
33 |
32
|
ralbidv |
|
34 |
33
|
adantl |
|
35 |
|
eqcom |
|
36 |
|
elmapi |
|
37 |
36
|
3ad2ant2 |
|
38 |
37
|
ad2antrr |
|
39 |
38
|
ffvelrnda |
|
40 |
39
|
recnd |
|
41 |
15 16
|
sylbi |
|
42 |
41
|
ad2antlr |
|
43 |
42
|
recnd |
|
44 |
|
eldifi |
|
45 |
|
elmapi |
|
46 |
44 45
|
syl |
|
47 |
46
|
3ad2ant3 |
|
48 |
47
|
ad2antrr |
|
49 |
48
|
ffvelrnda |
|
50 |
49
|
recnd |
|
51 |
43 50
|
mulcld |
|
52 |
|
1cnd |
|
53 |
52 43
|
subcld |
|
54 |
|
elmapi |
|
55 |
54
|
ad2antlr |
|
56 |
55
|
ffvelrnda |
|
57 |
56
|
recnd |
|
58 |
53 57
|
mulcld |
|
59 |
40 51 58
|
subadd2d |
|
60 |
35 59
|
bitr4id |
|
61 |
|
eqcom |
|
62 |
40 51
|
subcld |
|
63 |
15 22
|
sylbi |
|
64 |
63
|
ad2antlr |
|
65 |
52 43 64
|
subne0d |
|
66 |
62 53 57 65
|
divmuld |
|
67 |
61 66
|
bitr4id |
|
68 |
|
eqcom |
|
69 |
40 51 53 65
|
divsubdird |
|
70 |
40 53 65
|
divrec2d |
|
71 |
43 50 53 65
|
div23d |
|
72 |
70 71
|
oveq12d |
|
73 |
69 72
|
eqtrd |
|
74 |
73
|
eqeq2d |
|
75 |
68 74
|
syl5bb |
|
76 |
43 53 65
|
divcld |
|
77 |
76 50
|
mulneg1d |
|
78 |
77
|
eqcomd |
|
79 |
78
|
oveq2d |
|
80 |
53 65
|
reccld |
|
81 |
80 40
|
mulcld |
|
82 |
76 50
|
mulcld |
|
83 |
81 82
|
negsubd |
|
84 |
52 76
|
subnegd |
|
85 |
|
muldivdir |
|
86 |
52 43 53 65 85
|
syl112anc |
|
87 |
53
|
mulid1d |
|
88 |
87
|
oveq1d |
|
89 |
52 43
|
npcand |
|
90 |
88 89
|
eqtrd |
|
91 |
90
|
oveq1d |
|
92 |
84 86 91
|
3eqtr2d |
|
93 |
92
|
eqcomd |
|
94 |
93
|
oveq1d |
|
95 |
94
|
oveq1d |
|
96 |
79 83 95
|
3eqtr3d |
|
97 |
96
|
eqeq2d |
|
98 |
97
|
biimpd |
|
99 |
75 98
|
sylbid |
|
100 |
67 99
|
sylbid |
|
101 |
60 100
|
sylbid |
|
102 |
101
|
ralimdva |
|
103 |
102
|
imp |
|
104 |
27 34 103
|
rspcedvd |
|
105 |
104
|
rexlimdva2 |
|
106 |
|
0xr |
|
107 |
|
1re |
|
108 |
|
elioc2 |
|
109 |
106 107 108
|
mp2an |
|
110 |
|
simp1 |
|
111 |
|
gt0ne0 |
|
112 |
111
|
3adant3 |
|
113 |
110 112
|
rereccld |
|
114 |
109 113
|
sylbi |
|
115 |
114
|
ad2antlr |
|
116 |
|
oveq2 |
|
117 |
116
|
oveq1d |
|
118 |
|
oveq1 |
|
119 |
117 118
|
oveq12d |
|
120 |
119
|
eqeq2d |
|
121 |
120
|
ralbidv |
|
122 |
121
|
adantl |
|
123 |
|
eqcom |
|
124 |
47
|
ad2antrr |
|
125 |
124
|
ffvelrnda |
|
126 |
125
|
recnd |
|
127 |
|
1cnd |
|
128 |
109 110
|
sylbi |
|
129 |
128
|
recnd |
|
130 |
129
|
ad2antlr |
|
131 |
127 130
|
subcld |
|
132 |
37
|
ad2antrr |
|
133 |
132
|
ffvelrnda |
|
134 |
133
|
recnd |
|
135 |
131 134
|
mulcld |
|
136 |
126 135
|
negsubd |
|
137 |
131 134
|
mulneg1d |
|
138 |
127 130
|
negsubdi2d |
|
139 |
138
|
oveq1d |
|
140 |
137 139
|
eqtr3d |
|
141 |
140
|
oveq2d |
|
142 |
136 141
|
eqtr3d |
|
143 |
142
|
eqeq1d |
|
144 |
54
|
ad2antlr |
|
145 |
144
|
ffvelrnda |
|
146 |
145
|
recnd |
|
147 |
130 146
|
mulcld |
|
148 |
126 135 147
|
subaddd |
|
149 |
|
eqcom |
|
150 |
149
|
a1i |
|
151 |
130 127
|
subcld |
|
152 |
151 134
|
mulcld |
|
153 |
126 152
|
addcld |
|
154 |
|
elioc1 |
|
155 |
106 13 154
|
mp2an |
|
156 |
12
|
a1i |
|
157 |
156
|
anim1i |
|
158 |
157
|
3adant3 |
|
159 |
|
ltne |
|
160 |
158 159
|
syl |
|
161 |
155 160
|
sylbi |
|
162 |
161
|
ad2antlr |
|
163 |
153 146 130 162
|
divmul2d |
|
164 |
126 152 130 162
|
divdird |
|
165 |
126 130 162
|
divrec2d |
|
166 |
151 134 130 162
|
div23d |
|
167 |
130 127 130 162
|
divsubdird |
|
168 |
167
|
oveq1d |
|
169 |
166 168
|
eqtrd |
|
170 |
165 169
|
oveq12d |
|
171 |
164 170
|
eqtrd |
|
172 |
171
|
eqeq2d |
|
173 |
150 163 172
|
3bitr3d |
|
174 |
143 148 173
|
3bitr3d |
|
175 |
123 174
|
syl5bb |
|
176 |
130 162
|
reccld |
|
177 |
176 126
|
mulcld |
|
178 |
127 176
|
subcld |
|
179 |
178 134
|
mulcld |
|
180 |
130 162
|
dividd |
|
181 |
180
|
oveq1d |
|
182 |
181
|
oveq1d |
|
183 |
182
|
oveq2d |
|
184 |
177 179 183
|
comraddd |
|
185 |
184
|
eqeq2d |
|
186 |
185
|
biimpd |
|
187 |
175 186
|
sylbid |
|
188 |
187
|
ralimdva |
|
189 |
188
|
imp |
|
190 |
115 122 189
|
rspcedvd |
|
191 |
190
|
rexlimdva2 |
|
192 |
11 105 191
|
3jaod |
|