Metamath Proof Explorer


Theorem efchtdvds

Description: The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion efchtdvds ABABeθAeθB

Proof

Step Hyp Ref Expression
1 chtcl BθB
2 1 3ad2ant2 ABABθB
3 2 recnd ABABθB
4 chtcl AθA
5 4 3ad2ant1 ABABθA
6 5 recnd ABABθA
7 efsub θBθAeθBθA=eθBeθA
8 3 6 7 syl2anc ABABeθBθA=eθBeθA
9 chtfl BθB=θB
10 9 3ad2ant2 ABABθB=θB
11 chtfl AθA=θA
12 11 3ad2ant1 ABABθA=θA
13 10 12 oveq12d ABABθBθA=θBθA
14 flword2 ABABBA
15 chtdif BAθBθA=pA+1Blogp
16 14 15 syl ABABθBθA=pA+1Blogp
17 13 16 eqtr3d ABABθBθA=pA+1Blogp
18 ssrab2 x|ex
19 ax-resscn
20 18 19 sstri x|ex
21 20 a1i ABABx|ex
22 fveq2 x=yex=ey
23 22 eleq1d x=yexey
24 23 elrab yx|exyey
25 fveq2 x=zex=ez
26 25 eleq1d x=zexez
27 26 elrab zx|exzez
28 fveq2 x=y+zex=ey+z
29 28 eleq1d x=y+zexey+z
30 simpll yeyzezy
31 simprl yeyzezz
32 30 31 readdcld yeyzezy+z
33 30 recnd yeyzezy
34 31 recnd yeyzezz
35 efadd yzey+z=eyez
36 33 34 35 syl2anc yeyzezey+z=eyez
37 nnmulcl eyezeyez
38 37 ad2ant2l yeyzezeyez
39 36 38 eqeltrd yeyzezey+z
40 29 32 39 elrabd yeyzezy+zx|ex
41 24 27 40 syl2anb yx|exzx|exy+zx|ex
42 41 adantl ABAByx|exzx|exy+zx|ex
43 fzfid ABABA+1BFin
44 inss1 A+1BA+1B
45 ssfi A+1BFinA+1BA+1BA+1BFin
46 43 44 45 sylancl ABABA+1BFin
47 fveq2 x=logpex=elogp
48 47 eleq1d x=logpexelogp
49 simpr ABABpA+1BpA+1B
50 49 elin2d ABABpA+1Bp
51 prmnn pp
52 50 51 syl ABABpA+1Bp
53 52 nnrpd ABABpA+1Bp+
54 53 relogcld ABABpA+1Blogp
55 53 reeflogd ABABpA+1Belogp=p
56 55 52 eqeltrd ABABpA+1Belogp
57 48 54 56 elrabd ABABpA+1Blogpx|ex
58 0re 0
59 1nn 1
60 fveq2 x=0ex=e0
61 ef0 e0=1
62 60 61 eqtrdi x=0ex=1
63 62 eleq1d x=0ex1
64 63 elrab 0x|ex01
65 58 59 64 mpbir2an 0x|ex
66 65 a1i ABAB0x|ex
67 21 42 46 57 66 fsumcllem ABABpA+1Blogpx|ex
68 17 67 eqeltrd ABABθBθAx|ex
69 fveq2 x=θBθAex=eθBθA
70 69 eleq1d x=θBθAexeθBθA
71 70 elrab θBθAx|exθBθAeθBθA
72 71 simprbi θBθAx|exeθBθA
73 68 72 syl ABABeθBθA
74 8 73 eqeltrrd ABABeθBeθA
75 74 nnzd ABABeθBeθA
76 efchtcl AeθA
77 76 3ad2ant1 ABABeθA
78 77 nnzd ABABeθA
79 77 nnne0d ABABeθA0
80 efchtcl BeθB
81 80 3ad2ant2 ABABeθB
82 81 nnzd ABABeθB
83 dvdsval2 eθAeθA0eθBeθAeθBeθBeθA
84 78 79 82 83 syl3anc ABABeθAeθBeθBeθA
85 75 84 mpbird ABABeθAeθB