Metamath Proof Explorer


Theorem esplyfv1

Description: Coefficient for the K -th elementary symmetric polynomial and a bag of variables F where variables are not raised to a power. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplyfv.d D = h 0 I | finSupp 0 h
esplyfv.i φ I Fin
esplyfv.r φ R Ring
esplyfv.k φ K 0 I
esplyfv.f φ F D
esplyfv.0 0 ˙ = 0 R
esplyfv.1 1 ˙ = 1 R
esplyfv1.1 φ ran F 0 1
Assertion esplyfv1 Could not format assertion : No typesetting found for |- ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplyfv.d D = h 0 I | finSupp 0 h
2 esplyfv.i φ I Fin
3 esplyfv.r φ R Ring
4 esplyfv.k φ K 0 I
5 esplyfv.f φ F D
6 esplyfv.0 0 ˙ = 0 R
7 esplyfv.1 1 ˙ = 1 R
8 esplyfv1.1 φ ran F 0 1
9 elfznn0 K 0 I K 0
10 4 9 syl φ K 0
11 1 2 3 10 esplyfval Could not format ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-
12 11 fveq1d Could not format ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` F ) ) : No typesetting found for |- ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` F ) ) with typecode |-
13 ovex 0 I V
14 1 ssrab3 D 0 I
15 13 14 ssexi D V
16 15 a1i φ D V
17 nfv d φ
18 indf1o I Fin 𝟙 I : 𝒫 I 1-1 onto 0 1 I
19 f1of 𝟙 I : 𝒫 I 1-1 onto 0 1 I 𝟙 I : 𝒫 I 0 1 I
20 2 18 19 3syl φ 𝟙 I : 𝒫 I 0 1 I
21 20 ffund φ Fun 𝟙 I
22 breq1 h = 𝟙 I d finSupp 0 h finSupp 0 𝟙 I d
23 nn0ex 0 V
24 23 a1i φ d c 𝒫 I | c = K 0 V
25 2 adantr φ d c 𝒫 I | c = K I Fin
26 ssrab2 c 𝒫 I | c = K 𝒫 I
27 26 a1i φ c 𝒫 I | c = K 𝒫 I
28 27 sselda φ d c 𝒫 I | c = K d 𝒫 I
29 28 elpwid φ d c 𝒫 I | c = K d I
30 indf I Fin d I 𝟙 I d : I 0 1
31 25 29 30 syl2anc φ d c 𝒫 I | c = K 𝟙 I d : I 0 1
32 0nn0 0 0
33 32 a1i φ d c 𝒫 I | c = K 0 0
34 1nn0 1 0
35 34 a1i φ d c 𝒫 I | c = K 1 0
36 33 35 prssd φ d c 𝒫 I | c = K 0 1 0
37 31 36 fssd φ d c 𝒫 I | c = K 𝟙 I d : I 0
38 24 25 37 elmapdd φ d c 𝒫 I | c = K 𝟙 I d 0 I
39 31 25 33 fidmfisupp φ d c 𝒫 I | c = K finSupp 0 𝟙 I d
40 22 38 39 elrabd φ d c 𝒫 I | c = K 𝟙 I d h 0 I | finSupp 0 h
41 40 1 eleqtrrdi φ d c 𝒫 I | c = K 𝟙 I d D
42 17 21 41 funimassd φ 𝟙 I c 𝒫 I | c = K D
43 indf D V 𝟙 I c 𝒫 I | c = K D 𝟙 D 𝟙 I c 𝒫 I | c = K : D 0 1
44 16 42 43 syl2anc φ 𝟙 D 𝟙 I c 𝒫 I | c = K : D 0 1
45 44 5 fvco3d φ ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K F = ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K F
46 indfval D V 𝟙 I c 𝒫 I | c = K D F D 𝟙 D 𝟙 I c 𝒫 I | c = K F = if F 𝟙 I c 𝒫 I | c = K 1 0
47 15 42 5 46 mp3an2i φ 𝟙 D 𝟙 I c 𝒫 I | c = K F = if F 𝟙 I c 𝒫 I | c = K 1 0
48 47 fveq2d φ ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K F = ℤRHom R if F 𝟙 I c 𝒫 I | c = K 1 0
49 fvif ℤRHom R if F 𝟙 I c 𝒫 I | c = K 1 0 = if F 𝟙 I c 𝒫 I | c = K ℤRHom R 1 ℤRHom R 0
50 49 a1i φ ℤRHom R if F 𝟙 I c 𝒫 I | c = K 1 0 = if F 𝟙 I c 𝒫 I | c = K ℤRHom R 1 ℤRHom R 0
51 simpr φ d c 𝒫 I | c = K 𝟙 I d = F 𝟙 I d = F
52 51 oveq1d φ d c 𝒫 I | c = K 𝟙 I d = F 𝟙 I d supp 0 = F supp 0
53 indsupp I Fin d I 𝟙 I d supp 0 = d
54 25 29 53 syl2anc φ d c 𝒫 I | c = K 𝟙 I d supp 0 = d
55 54 adantr φ d c 𝒫 I | c = K 𝟙 I d = F 𝟙 I d supp 0 = d
56 52 55 eqtr3d φ d c 𝒫 I | c = K 𝟙 I d = F F supp 0 = d
57 56 fveq2d φ d c 𝒫 I | c = K 𝟙 I d = F F supp 0 = d
58 fveqeq2 c = d c = K d = K
59 simpr φ d c 𝒫 I | c = K d c 𝒫 I | c = K
60 58 59 elrabrd φ d c 𝒫 I | c = K d = K
61 60 adantr φ d c 𝒫 I | c = K 𝟙 I d = F d = K
62 57 61 eqtrd φ d c 𝒫 I | c = K 𝟙 I d = F F supp 0 = K
63 62 adantllr φ F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F F supp 0 = K
64 20 ffnd φ 𝟙 I Fn 𝒫 I
65 64 27 fvelimabd φ F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F
66 65 biimpa φ F 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = F
67 63 66 r19.29a φ F 𝟙 I c 𝒫 I | c = K F supp 0 = K
68 fveqeq2 d = F supp 0 𝟙 I d = F 𝟙 I F supp 0 = F
69 fveqeq2 c = F supp 0 c = K F supp 0 = K
70 2 adantr φ F supp 0 = K I Fin
71 suppssdm F supp 0 dom F
72 23 a1i φ 0 V
73 14 5 sselid φ F 0 I
74 2 72 73 elmaprd φ F : I 0
75 71 74 fssdm φ F supp 0 I
76 75 adantr φ F supp 0 = K F supp 0 I
77 70 76 sselpwd φ F supp 0 = K F supp 0 𝒫 I
78 simpr φ F supp 0 = K F supp 0 = K
79 69 77 78 elrabd φ F supp 0 = K F supp 0 c 𝒫 I | c = K
80 74 ffnd φ F Fn I
81 df-f F : I 0 1 F Fn I ran F 0 1
82 80 8 81 sylanbrc φ F : I 0 1
83 2 82 indfsid φ F = 𝟙 I F supp 0
84 83 adantr φ F supp 0 = K F = 𝟙 I F supp 0
85 84 eqcomd φ F supp 0 = K 𝟙 I F supp 0 = F
86 68 79 85 rspcedvdw φ F supp 0 = K d c 𝒫 I | c = K 𝟙 I d = F
87 65 biimpar φ d c 𝒫 I | c = K 𝟙 I d = F F 𝟙 I c 𝒫 I | c = K
88 86 87 syldan φ F supp 0 = K F 𝟙 I c 𝒫 I | c = K
89 67 88 impbida φ F 𝟙 I c 𝒫 I | c = K F supp 0 = K
90 eqid ℤRHom R = ℤRHom R
91 90 7 zrh1 R Ring ℤRHom R 1 = 1 ˙
92 3 91 syl φ ℤRHom R 1 = 1 ˙
93 90 6 zrh0 R Ring ℤRHom R 0 = 0 ˙
94 3 93 syl φ ℤRHom R 0 = 0 ˙
95 89 92 94 ifbieq12d φ if F 𝟙 I c 𝒫 I | c = K ℤRHom R 1 ℤRHom R 0 = if F supp 0 = K 1 ˙ 0 ˙
96 48 50 95 3eqtrd φ ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K F = if F supp 0 = K 1 ˙ 0 ˙
97 12 45 96 3eqtrd Could not format ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) ) : No typesetting found for |- ( ph -> ( ( ( I eSymPoly R ) ` K ) ` F ) = if ( ( # ` ( F supp 0 ) ) = K , .1. , .0. ) ) with typecode |-