Metamath Proof Explorer


Theorem expdiophlem2

Description: Lemma for expdioph . Exponentiation on a restricted domain is Diophantine. (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Assertion expdiophlem2 a013|a12a2a3=a1a2Dioph3

Proof

Step Hyp Ref Expression
1 elmapi a013a:130
2 3nn 3
3 2 jm2.27dlem3 313
4 ffvelcdm a:130313a30
5 1 3 4 sylancl a013a30
6 expdiophlem1 a30a12a2a3=a1a2b0c0d0a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3
7 5 6 syl a013a12a2a3=a1a2b0c0d0a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3
8 7 rabbiia a013|a12a2a3=a1a2=a013|b0c0d0a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3
9 3nn0 30
10 fvex e5V
11 fvex e6V
12 eqeq1 c=e5c=bYrma2e5=bYrma2
13 12 anbi2d c=e5b2c=bYrma2b2e5=bYrma2
14 13 adantr c=e5d=e6b2c=bYrma2b2e5=bYrma2
15 eqeq1 d=e6d=bXrma2e6=bXrma2
16 15 anbi2d d=e6b2d=bXrma2b2e6=bXrma2
17 16 adantl c=e5d=e6b2d=bXrma2b2e6=bXrma2
18 simpr c=e5d=e6d=e6
19 oveq2 c=e5ba1c=ba1e5
20 19 adantr c=e5d=e6ba1c=ba1e5
21 18 20 oveq12d c=e5d=e6dba1c=e6ba1e5
22 21 oveq1d c=e5d=e6d-ba1c-a3=e6-ba1e5-a3
23 22 breq2d c=e5d=e62ba1-a12-1d-ba1c-a32ba1-a12-1e6-ba1e5-a3
24 23 anbi2d c=e5d=e6a3<2ba1-a12-12ba1-a12-1d-ba1c-a3a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3
25 17 24 anbi12d c=e5d=e6b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3
26 14 25 anbi12d c=e5d=e6b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3
27 26 anbi2d c=e5d=e6a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3a12b=a1Yrma2+1b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3
28 27 anbi2d c=e5d=e6a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3a12a2a12b=a1Yrma2+1b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3
29 10 11 28 sbc2ie [˙e5/c]˙[˙e6/d]˙a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3a12a2a12b=a1Yrma2+1b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3
30 29 sbcbii [˙e4/b]˙[˙e5/c]˙[˙e6/d]˙a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3[˙e4/b]˙a12a2a12b=a1Yrma2+1b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3
31 30 sbcbii [˙e13/a]˙[˙e4/b]˙[˙e5/c]˙[˙e6/d]˙a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3[˙e13/a]˙[˙e4/b]˙a12a2a12b=a1Yrma2+1b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3
32 vex eV
33 32 resex e13V
34 fvex e4V
35 df-2 2=1+1
36 df-3 3=2+1
37 ssid 1313
38 36 37 jm2.27dlem5 1213
39 35 38 jm2.27dlem5 1113
40 1nn 1
41 40 jm2.27dlem3 111
42 39 41 sselii 113
43 42 jm2.27dlem1 a=e13a1=e1
44 43 eleq1d a=e13a12e12
45 2nn 2
46 45 jm2.27dlem3 212
47 46 36 45 jm2.27dlem2 213
48 47 jm2.27dlem1 a=e13a2=e2
49 48 eleq1d a=e13a2e2
50 44 49 anbi12d a=e13a12a2e12e2
51 50 adantr a=e13b=e4a12a2e12e2
52 44 adantr a=e13b=e4a12e12
53 id b=e4b=e4
54 48 oveq1d a=e13a2+1=e2+1
55 43 54 oveq12d a=e13a1Yrma2+1=e1Yrme2+1
56 53 55 eqeqan12rd a=e13b=e4b=a1Yrma2+1e4=e1Yrme2+1
57 52 56 anbi12d a=e13b=e4a12b=a1Yrma2+1e12e4=e1Yrme2+1
58 eleq1 b=e4b2e42
59 58 adantl a=e13b=e4b2e42
60 53 48 oveqan12rd a=e13b=e4bYrma2=e4Yrme2
61 60 eqeq2d a=e13b=e4e5=bYrma2e5=e4Yrme2
62 59 61 anbi12d a=e13b=e4b2e5=bYrma2e42e5=e4Yrme2
63 53 48 oveqan12rd a=e13b=e4bXrma2=e4Xrme2
64 63 eqeq2d a=e13b=e4e6=bXrma2e6=e4Xrme2
65 59 64 anbi12d a=e13b=e4b2e6=bXrma2e42e6=e4Xrme2
66 3 jm2.27dlem1 a=e13a3=e3
67 66 adantr a=e13b=e4a3=e3
68 oveq2 b=e42b=2e4
69 68 43 oveqan12rd a=e13b=e42ba1=2e4e1
70 43 oveq1d a=e13a12=e12
71 70 adantr a=e13b=e4a12=e12
72 69 71 oveq12d a=e13b=e42ba1a12=2e4e1e12
73 72 oveq1d a=e13b=e42ba1-a12-1=2e4e1-e12-1
74 67 73 breq12d a=e13b=e4a3<2ba1-a12-1e3<2e4e1-e12-1
75 simpr a=e13b=e4b=e4
76 43 adantr a=e13b=e4a1=e1
77 75 76 oveq12d a=e13b=e4ba1=e4e1
78 77 oveq1d a=e13b=e4ba1e5=e4e1e5
79 78 oveq2d a=e13b=e4e6ba1e5=e6e4e1e5
80 79 67 oveq12d a=e13b=e4e6-ba1e5-a3=e6-e4e1e5-e3
81 73 80 breq12d a=e13b=e42ba1-a12-1e6-ba1e5-a32e4e1-e12-1e6-e4e1e5-e3
82 74 81 anbi12d a=e13b=e4a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3
83 65 82 anbi12d a=e13b=e4b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3
84 62 83 anbi12d a=e13b=e4b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3
85 57 84 anbi12d a=e13b=e4a12b=a1Yrma2+1b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3
86 51 85 anbi12d a=e13b=e4a12a2a12b=a1Yrma2+1b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3e12e2e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3
87 33 34 86 sbc2ie [˙e13/a]˙[˙e4/b]˙a12a2a12b=a1Yrma2+1b2e5=bYrma2b2e6=bXrma2a3<2ba1-a12-12ba1-a12-1e6-ba1e5-a3e12e2e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3
88 31 87 bitri [˙e13/a]˙[˙e4/b]˙[˙e5/c]˙[˙e6/d]˙a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3e12e2e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3
89 88 rabbii e016|[˙e13/a]˙[˙e4/b]˙[˙e5/c]˙[˙e6/d]˙a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3=e016|e12e2e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3
90 6nn0 60
91 2z 2
92 ovex 16V
93 df-4 4=3+1
94 df-5 5=4+1
95 df-6 6=5+1
96 ssid 1616
97 95 96 jm2.27dlem5 1516
98 94 97 jm2.27dlem5 1416
99 93 98 jm2.27dlem5 1316
100 36 99 jm2.27dlem5 1216
101 35 100 jm2.27dlem5 1116
102 101 41 sselii 116
103 mzpproj 16V116e16e1mzPoly16
104 92 102 103 mp2an e16e1mzPoly16
105 eluzrabdioph 602e16e1mzPoly16e016|e12Dioph6
106 90 91 104 105 mp3an e016|e12Dioph6
107 100 46 sselii 216
108 mzpproj 16V216e16e2mzPoly16
109 92 107 108 mp2an e16e2mzPoly16
110 elnnrabdioph 60e16e2mzPoly16e016|e2Dioph6
111 90 109 110 mp2an e016|e2Dioph6
112 anrabdioph e016|e12Dioph6e016|e2Dioph6e016|e12e2Dioph6
113 106 111 112 mp2an e016|e12e2Dioph6
114 elmapi e016e:160
115 ffvelcdm e:160216e20
116 114 107 115 sylancl e016e20
117 peano2nn0 e20e2+10
118 oveq2 b=e2+1e1Yrmb=e1Yrme2+1
119 118 eqeq2d b=e2+1e4=e1Yrmbe4=e1Yrme2+1
120 119 anbi2d b=e2+1e12e4=e1Yrmbe12e4=e1Yrme2+1
121 120 ceqsrexv e2+10b0b=e2+1e12e4=e1Yrmbe12e4=e1Yrme2+1
122 116 117 121 3syl e016b0b=e2+1e12e4=e1Yrmbe12e4=e1Yrme2+1
123 122 bicomd e016e12e4=e1Yrme2+1b0b=e2+1e12e4=e1Yrmb
124 123 rabbiia e016|e12e4=e1Yrme2+1=e016|b0b=e2+1e12e4=e1Yrmb
125 vex aV
126 125 resex a16V
127 fvex a7V
128 id b=a7b=a7
129 107 jm2.27dlem1 e=a16e2=a2
130 129 oveq1d e=a16e2+1=a2+1
131 128 130 eqeqan12rd e=a16b=a7b=e2+1a7=a2+1
132 102 jm2.27dlem1 e=a16e1=a1
133 132 adantr e=a16b=a7e1=a1
134 133 eleq1d e=a16b=a7e12a12
135 4nn 4
136 135 jm2.27dlem3 414
137 98 136 sselii 416
138 137 jm2.27dlem1 e=a16e4=a4
139 138 adantr e=a16b=a7e4=a4
140 132 128 oveqan12d e=a16b=a7e1Yrmb=a1Yrma7
141 139 140 eqeq12d e=a16b=a7e4=e1Yrmba4=a1Yrma7
142 134 141 anbi12d e=a16b=a7e12e4=e1Yrmba12a4=a1Yrma7
143 131 142 anbi12d e=a16b=a7b=e2+1e12e4=e1Yrmba7=a2+1a12a4=a1Yrma7
144 126 127 143 sbc2ie [˙a16/e]˙[˙a7/b]˙b=e2+1e12e4=e1Yrmba7=a2+1a12a4=a1Yrma7
145 144 rabbii a017|[˙a16/e]˙[˙a7/b]˙b=e2+1e12e4=e1Yrmb=a017|a7=a2+1a12a4=a1Yrma7
146 7nn0 70
147 ovex 17V
148 7nn 7
149 148 jm2.27dlem3 717
150 mzpproj 17V717a17a7mzPoly17
151 147 149 150 mp2an a17a7mzPoly17
152 df-7 7=6+1
153 6nn 6
154 107 152 153 jm2.27dlem2 217
155 mzpproj 17V217a17a2mzPoly17
156 147 154 155 mp2an a17a2mzPoly17
157 1z 1
158 mzpconstmpt 17V1a171mzPoly17
159 147 157 158 mp2an a171mzPoly17
160 mzpaddmpt a17a2mzPoly17a171mzPoly17a17a2+1mzPoly17
161 156 159 160 mp2an a17a2+1mzPoly17
162 eqrabdioph 70a17a7mzPoly17a17a2+1mzPoly17a017|a7=a2+1Dioph7
163 146 151 161 162 mp3an a017|a7=a2+1Dioph7
164 rmydioph b013|b12b3=b1Yrmb2Dioph3
165 simp1 b1=a1b2=a7b3=a4b1=a1
166 165 eleq1d b1=a1b2=a7b3=a4b12a12
167 simp3 b1=a1b2=a7b3=a4b3=a4
168 simp2 b1=a1b2=a7b3=a4b2=a7
169 165 168 oveq12d b1=a1b2=a7b3=a4b1Yrmb2=a1Yrma7
170 167 169 eqeq12d b1=a1b2=a7b3=a4b3=b1Yrmb2a4=a1Yrma7
171 166 170 anbi12d b1=a1b2=a7b3=a4b12b3=b1Yrmb2a12a4=a1Yrma7
172 102 152 153 jm2.27dlem2 117
173 137 152 153 jm2.27dlem2 417
174 171 172 149 173 rabren3dioph 70b013|b12b3=b1Yrmb2Dioph3a017|a12a4=a1Yrma7Dioph7
175 146 164 174 mp2an a017|a12a4=a1Yrma7Dioph7
176 anrabdioph a017|a7=a2+1Dioph7a017|a12a4=a1Yrma7Dioph7a017|a7=a2+1a12a4=a1Yrma7Dioph7
177 163 175 176 mp2an a017|a7=a2+1a12a4=a1Yrma7Dioph7
178 145 177 eqeltri a017|[˙a16/e]˙[˙a7/b]˙b=e2+1e12e4=e1YrmbDioph7
179 152 rexfrabdioph 60a017|[˙a16/e]˙[˙a7/b]˙b=e2+1e12e4=e1YrmbDioph7e016|b0b=e2+1e12e4=e1YrmbDioph6
180 90 178 179 mp2an e016|b0b=e2+1e12e4=e1YrmbDioph6
181 124 180 eqeltri e016|e12e4=e1Yrme2+1Dioph6
182 rmydioph a013|a12a3=a1Yrma2Dioph3
183 simp1 a1=e4a2=e2a3=e5a1=e4
184 183 eleq1d a1=e4a2=e2a3=e5a12e42
185 simp3 a1=e4a2=e2a3=e5a3=e5
186 simp2 a1=e4a2=e2a3=e5a2=e2
187 183 186 oveq12d a1=e4a2=e2a3=e5a1Yrma2=e4Yrme2
188 185 187 eqeq12d a1=e4a2=e2a3=e5a3=a1Yrma2e5=e4Yrme2
189 184 188 anbi12d a1=e4a2=e2a3=e5a12a3=a1Yrma2e42e5=e4Yrme2
190 5nn 5
191 190 jm2.27dlem3 515
192 191 95 190 jm2.27dlem2 516
193 189 137 107 192 rabren3dioph 60a013|a12a3=a1Yrma2Dioph3e016|e42e5=e4Yrme2Dioph6
194 90 182 193 mp2an e016|e42e5=e4Yrme2Dioph6
195 rmxdioph a013|a12a3=a1Xrma2Dioph3
196 simp1 a1=e4a2=e2a3=e6a1=e4
197 196 eleq1d a1=e4a2=e2a3=e6a12e42
198 simp3 a1=e4a2=e2a3=e6a3=e6
199 simp2 a1=e4a2=e2a3=e6a2=e2
200 196 199 oveq12d a1=e4a2=e2a3=e6a1Xrma2=e4Xrme2
201 198 200 eqeq12d a1=e4a2=e2a3=e6a3=a1Xrma2e6=e4Xrme2
202 197 201 anbi12d a1=e4a2=e2a3=e6a12a3=a1Xrma2e42e6=e4Xrme2
203 153 jm2.27dlem3 616
204 202 137 107 203 rabren3dioph 60a013|a12a3=a1Xrma2Dioph3e016|e42e6=e4Xrme2Dioph6
205 90 195 204 mp2an e016|e42e6=e4Xrme2Dioph6
206 99 3 sselii 316
207 mzpproj 16V316e16e3mzPoly16
208 92 206 207 mp2an e16e3mzPoly16
209 mzpconstmpt 16V2e162mzPoly16
210 92 91 209 mp2an e162mzPoly16
211 mzpproj 16V416e16e4mzPoly16
212 92 137 211 mp2an e16e4mzPoly16
213 mzpmulmpt e162mzPoly16e16e4mzPoly16e162e4mzPoly16
214 210 212 213 mp2an e162e4mzPoly16
215 mzpmulmpt e162e4mzPoly16e16e1mzPoly16e162e4e1mzPoly16
216 214 104 215 mp2an e162e4e1mzPoly16
217 2nn0 20
218 mzpexpmpt e16e1mzPoly1620e16e12mzPoly16
219 104 217 218 mp2an e16e12mzPoly16
220 mzpsubmpt e162e4e1mzPoly16e16e12mzPoly16e162e4e1e12mzPoly16
221 216 219 220 mp2an e162e4e1e12mzPoly16
222 mzpconstmpt 16V1e161mzPoly16
223 92 157 222 mp2an e161mzPoly16
224 mzpsubmpt e162e4e1e12mzPoly16e161mzPoly16e162e4e1-e12-1mzPoly16
225 221 223 224 mp2an e162e4e1-e12-1mzPoly16
226 ltrabdioph 60e16e3mzPoly16e162e4e1-e12-1mzPoly16e016|e3<2e4e1-e12-1Dioph6
227 90 208 225 226 mp3an e016|e3<2e4e1-e12-1Dioph6
228 mzpproj 16V616e16e6mzPoly16
229 92 203 228 mp2an e16e6mzPoly16
230 mzpsubmpt e16e4mzPoly16e16e1mzPoly16e16e4e1mzPoly16
231 212 104 230 mp2an e16e4e1mzPoly16
232 mzpproj 16V516e16e5mzPoly16
233 92 192 232 mp2an e16e5mzPoly16
234 mzpmulmpt e16e4e1mzPoly16e16e5mzPoly16e16e4e1e5mzPoly16
235 231 233 234 mp2an e16e4e1e5mzPoly16
236 mzpsubmpt e16e6mzPoly16e16e4e1e5mzPoly16e16e6e4e1e5mzPoly16
237 229 235 236 mp2an e16e6e4e1e5mzPoly16
238 mzpsubmpt e16e6e4e1e5mzPoly16e16e3mzPoly16e16e6-e4e1e5-e3mzPoly16
239 237 208 238 mp2an e16e6-e4e1e5-e3mzPoly16
240 dvdsrabdioph 60e162e4e1-e12-1mzPoly16e16e6-e4e1e5-e3mzPoly16e016|2e4e1-e12-1e6-e4e1e5-e3Dioph6
241 90 225 239 240 mp3an e016|2e4e1-e12-1e6-e4e1e5-e3Dioph6
242 anrabdioph e016|e3<2e4e1-e12-1Dioph6e016|2e4e1-e12-1e6-e4e1e5-e3Dioph6e016|e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
243 227 241 242 mp2an e016|e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
244 anrabdioph e016|e42e6=e4Xrme2Dioph6e016|e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6e016|e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
245 205 243 244 mp2an e016|e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
246 anrabdioph e016|e42e5=e4Yrme2Dioph6e016|e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6e016|e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
247 194 245 246 mp2an e016|e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
248 anrabdioph e016|e12e4=e1Yrme2+1Dioph6e016|e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6e016|e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
249 181 247 248 mp2an e016|e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
250 anrabdioph e016|e12e2Dioph6e016|e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6e016|e12e2e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
251 113 249 250 mp2an e016|e12e2e12e4=e1Yrme2+1e42e5=e4Yrme2e42e6=e4Xrme2e3<2e4e1-e12-12e4e1-e12-1e6-e4e1e5-e3Dioph6
252 89 251 eqeltri e016|[˙e13/a]˙[˙e4/b]˙[˙e5/c]˙[˙e6/d]˙a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3Dioph6
253 93 94 95 3rexfrabdioph 30e016|[˙e13/a]˙[˙e4/b]˙[˙e5/c]˙[˙e6/d]˙a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3Dioph6a013|b0c0d0a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3Dioph3
254 9 252 253 mp2an a013|b0c0d0a12a2a12b=a1Yrma2+1b2c=bYrma2b2d=bXrma2a3<2ba1-a12-12ba1-a12-1d-ba1c-a3Dioph3
255 8 254 eqeltri a013|a12a2a3=a1a2Dioph3