Metamath Proof Explorer


Theorem faclbnd4lem1

Description: Lemma for faclbnd4 . Prepare the induction step. (Contributed by NM, 20-Dec-2005)

Ref Expression
Hypotheses faclbnd4lem1.1 N
faclbnd4lem1.2 K0
faclbnd4lem1.3 M0
Assertion faclbnd4lem1 N1KMN12K2MM+KN1!NK+1MN2K+12MM+K+1N!

Proof

Step Hyp Ref Expression
1 faclbnd4lem1.1 N
2 faclbnd4lem1.2 K0
3 faclbnd4lem1.3 M0
4 1 nnrei N
5 1re 1
6 lelttric N1N11<N
7 4 5 6 mp2an N11<N
8 nnge1 N1N
9 1 8 ax-mp 1N
10 4 5 letri3i N=1N11N
11 9 10 mpbiran2 N=1N1
12 0le1 01
13 5 12 pm3.2i 101
14 2re 2
15 1nn 1
16 nn0nnaddcl K01K+1
17 2 15 16 mp2an K+1
18 17 nnnn0i K+10
19 2nn0 20
20 18 19 nn0expcli K+120
21 reexpcl 2K+1202K+12
22 14 20 21 mp2an 2K+12
23 13 22 pm3.2i 1012K+12
24 3 nn0rei M
25 3 nn0ge0i 0M
26 24 25 pm3.2i M0M
27 nn0nnaddcl M0K+1M+K+1
28 3 17 27 mp2an M+K+1
29 28 nnnn0i M+K+10
30 3 29 nn0expcli MM+K+10
31 30 nn0rei MM+K+1
32 26 31 pm3.2i M0MMM+K+1
33 23 32 pm3.2i 1012K+12M0MMM+K+1
34 2cn 2
35 exp0 220=1
36 34 35 ax-mp 20=1
37 1le2 12
38 nn0uz 0=0
39 20 38 eleqtri K+120
40 leexp2a 212K+120202K+12
41 14 37 39 40 mp3an 202K+12
42 36 41 eqbrtrri 12K+12
43 elnn0 M0MM=0
44 nncn MM
45 44 exp1d MM1=M
46 nnge1 M1M
47 nnuz =1
48 28 47 eleqtri M+K+11
49 leexp2a M1MM+K+11M1MM+K+1
50 24 48 49 mp3an13 1MM1MM+K+1
51 46 50 syl MM1MM+K+1
52 45 51 eqbrtrrd MMMM+K+1
53 30 nn0ge0i 0MM+K+1
54 breq1 M=0MMM+K+10MM+K+1
55 53 54 mpbiri M=0MMM+K+1
56 52 55 jaoi MM=0MMM+K+1
57 43 56 sylbi M0MMM+K+1
58 3 57 ax-mp MMM+K+1
59 42 58 pm3.2i 12K+12MMM+K+1
60 lemul12a 1012K+12M0MMM+K+112K+12MMM+K+11 M2K+12MM+K+1
61 33 59 60 mp2 1 M2K+12MM+K+1
62 oveq1 N=1NK+1=1K+1
63 17 nnzi K+1
64 1exp K+11K+1=1
65 63 64 ax-mp 1K+1=1
66 62 65 eqtrdi N=1NK+1=1
67 oveq2 N=1MN=M1
68 3 nn0cni M
69 exp1 MM1=M
70 68 69 ax-mp M1=M
71 67 70 eqtrdi N=1MN=M
72 66 71 oveq12d N=1NK+1MN=1 M
73 fveq2 N=1N!=1!
74 fac1 1!=1
75 73 74 eqtrdi N=1N!=1
76 75 oveq2d N=12K+12MM+K+1N!=2K+12MM+K+11
77 22 recni 2K+12
78 30 nn0cni MM+K+1
79 77 78 mulcli 2K+12MM+K+1
80 79 mulridi 2K+12MM+K+11=2K+12MM+K+1
81 76 80 eqtrdi N=12K+12MM+K+1N!=2K+12MM+K+1
82 72 81 breq12d N=1NK+1MN2K+12MM+K+1N!1 M2K+12MM+K+1
83 61 82 mpbiri N=1NK+1MN2K+12MM+K+1N!
84 11 83 sylbir N1NK+1MN2K+12MM+K+1N!
85 84 adantr N1N1KMN12K2MM+KN1!NK+1MN2K+12MM+K+1N!
86 reexpcl NK+10NK+1
87 4 18 86 mp2an NK+1
88 1 nnnn0i N0
89 reexpcl MN0MN
90 24 88 89 mp2an MN
91 87 90 remulcli NK+1MN
92 91 a1i 1<NN1KMN12K2MM+KN1!NK+1MN
93 2 19 nn0expcli K20
94 reexpcl 2K202K2
95 14 93 94 mp2an 2K2
96 19 2 nn0expcli 2K0
97 96 nn0rei 2K
98 95 97 remulcli 2K22K
99 faccl N0N!
100 88 99 ax-mp N!
101 100 nnnn0i N!0
102 30 101 nn0mulcli MM+K+1N!0
103 102 nn0rei MM+K+1N!
104 98 103 remulcli 2K22KMM+K+1N!
105 104 a1i 1<NN1KMN12K2MM+KN1!2K22KMM+K+1N!
106 22 103 remulcli 2K+12MM+K+1N!
107 106 a1i 1<NN1KMN12K2MM+KN1!2K+12MM+K+1N!
108 1 nncni N
109 expp1 NK0NK+1=NK N
110 108 2 109 mp2an NK+1=NK N
111 expm1t MNMN=MN1 M
112 68 1 111 mp2an MN=MN1 M
113 110 112 oveq12i NK+1MN=NK NMN1 M
114 reexpcl NK0NK
115 4 2 114 mp2an NK
116 115 recni NK
117 elnnnn0 NNN10
118 1 117 mpbi NN10
119 118 simpri N10
120 3 119 nn0expcli MN10
121 120 3 nn0mulcli MN1 M0
122 121 nn0cni MN1 M
123 116 108 122 mulassi NK NMN1 M=NKNMN1 M
124 113 123 eqtri NK+1MN=NKNMN1 M
125 88 121 nn0mulcli NMN1 M0
126 125 nn0rei NMN1 M
127 115 126 remulcli NKNMN1 M
128 127 a1i 1<NN1KMN12K2MM+KN1!NKNMN1 M
129 119 nn0rei N1
130 reexpcl N1K0N1K
131 129 2 130 mp2an N1K
132 120 nn0rei MN1
133 131 132 remulcli N1KMN1
134 96 88 nn0mulcli 2K N0
135 134 3 nn0mulcli 2K N M0
136 135 nn0rei 2K N M
137 133 136 remulcli N1KMN12K N M
138 137 a1i 1<NN1KMN12K2MM+KN1!N1KMN12K N M
139 3 2 nn0addcli M+K0
140 reexpcl MM+K0MM+K
141 24 139 140 mp2an MM+K
142 95 141 remulcli 2K2MM+K
143 faccl N10N1!
144 119 143 ax-mp N1!
145 144 nnrei N1!
146 142 145 remulcli 2K2MM+KN1!
147 146 136 remulcli 2K2MM+KN1!2K N M
148 147 a1i 1<NN1KMN12K2MM+KN1!2K2MM+KN1!2K N M
149 97 131 remulcli 2KN1K
150 125 nn0ge0i 0NMN1 M
151 126 150 pm3.2i NMN1 M0NMN1 M
152 115 149 151 3pm3.2i NK2KN1KNMN1 M0NMN1 M
153 nnltp1le 1N1<N1+1N
154 15 1 153 mp2an 1<N1+1N
155 df-2 2=1+1
156 155 breq1i 2N1+1N
157 154 156 bitr4i 1<N2N
158 expubnd NK02NNK2KN1K
159 4 2 158 mp3an12 2NNK2KN1K
160 157 159 sylbi 1<NNK2KN1K
161 lemul1a NK2KN1KNMN1 M0NMN1 MNK2KN1KNKNMN1 M2KN1KNMN1 M
162 152 160 161 sylancr 1<NNKNMN1 M2KN1KNMN1 M
163 96 nn0cni 2K
164 131 recni N1K
165 163 164 108 122 mul4i 2KN1KNMN1 M=2K NN1KMN1 M
166 120 nn0cni MN1
167 164 166 68 mulassi N1KMN1 M=N1KMN1 M
168 167 oveq2i 2K NN1KMN1 M=2K NN1KMN1 M
169 134 nn0cni 2K N
170 133 recni N1KMN1
171 169 170 68 mul12i 2K NN1KMN1 M=N1KMN12K N M
172 165 168 171 3eqtr2i 2KN1KNMN1 M=N1KMN12K N M
173 162 172 breqtrdi 1<NNKNMN1 MN1KMN12K N M
174 173 adantr 1<NN1KMN12K2MM+KN1!NKNMN1 MN1KMN12K N M
175 135 nn0ge0i 02K N M
176 136 175 pm3.2i 2K N M02K N M
177 133 146 176 3pm3.2i N1KMN12K2MM+KN1!2K N M02K N M
178 lemul1a N1KMN12K2MM+KN1!2K N M02K N MN1KMN12K2MM+KN1!N1KMN12K N M2K2MM+KN1!2K N M
179 177 178 mpan N1KMN12K2MM+KN1!N1KMN12K N M2K2MM+KN1!2K N M
180 179 adantl 1<NN1KMN12K2MM+KN1!N1KMN12K N M2K2MM+KN1!2K N M
181 128 138 148 174 180 letrd 1<NN1KMN12K2MM+KN1!NKNMN1 M2K2MM+KN1!2K N M
182 163 108 68 mul32i 2K N M=2K M N
183 182 oveq2i 2K2MM+KN1!2K N M=2K2MM+KN1!2K M N
184 expp1 MM+K0MM+K+1=MM+K M
185 68 139 184 mp2an MM+K+1=MM+K M
186 2 nn0cni K
187 ax-1cn 1
188 68 186 187 addassi M+K+1=M+K+1
189 188 oveq2i MM+K+1=MM+K+1
190 185 189 eqtr3i MM+K M=MM+K+1
191 190 oveq2i 2K22KMM+K M=2K22KMM+K+1
192 95 recni 2K2
193 141 recni MM+K
194 192 163 193 68 mul4i 2K22KMM+K M=2K2MM+K2K M
195 191 194 eqtr3i 2K22KMM+K+1=2K2MM+K2K M
196 facnn2 NN!=N1! N
197 1 196 ax-mp N!=N1! N
198 195 197 oveq12i 2K22KMM+K+1N!=2K2MM+K2K MN1! N
199 142 recni 2K2MM+K
200 144 nncni N1!
201 163 68 mulcli 2K M
202 199 200 201 108 mul4i 2K2MM+KN1!2K M N=2K2MM+K2K MN1! N
203 198 202 eqtr4i 2K22KMM+K+1N!=2K2MM+KN1!2K M N
204 98 recni 2K22K
205 100 nncni N!
206 204 78 205 mulassi 2K22KMM+K+1N!=2K22KMM+K+1N!
207 183 203 206 3eqtr2i 2K2MM+KN1!2K N M=2K22KMM+K+1N!
208 181 207 breqtrdi 1<NN1KMN12K2MM+KN1!NKNMN1 M2K22KMM+K+1N!
209 124 208 eqbrtrid 1<NN1KMN12K2MM+KN1!NK+1MN2K22KMM+K+1N!
210 102 nn0ge0i 0MM+K+1N!
211 103 210 pm3.2i MM+K+1N!0MM+K+1N!
212 98 22 211 3pm3.2i 2K22K2K+12MM+K+1N!0MM+K+1N!
213 expadd 2K20K02K2+K=2K22K
214 34 93 2 213 mp3an 2K2+K=2K22K
215 20 nn0zi K+12
216 2 nn0rei K
217 17 nnrei K+1
218 18 nn0ge0i 0K+1
219 217 218 pm3.2i K+10K+1
220 216 217 219 3pm3.2i KK+1K+10K+1
221 216 ltp1i K<K+1
222 216 217 221 ltleii KK+1
223 lemul1a KK+1K+10K+1KK+1KK+1K+1K+1
224 220 222 223 mp2an KK+1K+1K+1
225 186 sqvali K2=KK
226 186 mulridi K1=K
227 226 eqcomi K=K1
228 225 227 oveq12i K2+K=KK+K1
229 186 186 187 adddii KK+1=KK+K1
230 228 229 eqtr4i K2+K=KK+1
231 17 nncni K+1
232 231 sqvali K+12=K+1K+1
233 224 230 232 3brtr4i K2+KK+12
234 93 2 nn0addcli K2+K0
235 234 nn0zi K2+K
236 235 eluz1i K+12K2+KK+12K2+KK+12
237 215 233 236 mpbir2an K+12K2+K
238 leexp2a 212K+12K2+K2K2+K2K+12
239 14 37 237 238 mp3an 2K2+K2K+12
240 214 239 eqbrtrri 2K22K2K+12
241 lemul1a 2K22K2K+12MM+K+1N!0MM+K+1N!2K22K2K+122K22KMM+K+1N!2K+12MM+K+1N!
242 212 240 241 mp2an 2K22KMM+K+1N!2K+12MM+K+1N!
243 242 a1i 1<NN1KMN12K2MM+KN1!2K22KMM+K+1N!2K+12MM+K+1N!
244 92 105 107 209 243 letrd 1<NN1KMN12K2MM+KN1!NK+1MN2K+12MM+K+1N!
245 77 78 205 mulassi 2K+12MM+K+1N!=2K+12MM+K+1N!
246 244 245 breqtrrdi 1<NN1KMN12K2MM+KN1!NK+1MN2K+12MM+K+1N!
247 85 246 jaoian N11<NN1KMN12K2MM+KN1!NK+1MN2K+12MM+K+1N!
248 7 247 mpan N1KMN12K2MM+KN1!NK+1MN2K+12MM+K+1N!