Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Factorial function
faclbnd4lem1
Next ⟩
faclbnd4lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
faclbnd4lem1
Description:
Lemma for
faclbnd4
. Prepare the induction step.
(Contributed by
NM
, 20-Dec-2005)
Ref
Expression
Hypotheses
faclbnd4lem1.1
⊢
N
∈
ℕ
faclbnd4lem1.2
⊢
K
∈
ℕ
0
faclbnd4lem1.3
⊢
M
∈
ℕ
0
Assertion
faclbnd4lem1
⊢
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
+
1
M
N
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
Proof
Step
Hyp
Ref
Expression
1
faclbnd4lem1.1
⊢
N
∈
ℕ
2
faclbnd4lem1.2
⊢
K
∈
ℕ
0
3
faclbnd4lem1.3
⊢
M
∈
ℕ
0
4
1
nnrei
⊢
N
∈
ℝ
5
1re
⊢
1
∈
ℝ
6
lelttric
⊢
N
∈
ℝ
∧
1
∈
ℝ
→
N
≤
1
∨
1
<
N
7
4
5
6
mp2an
⊢
N
≤
1
∨
1
<
N
8
nnge1
⊢
N
∈
ℕ
→
1
≤
N
9
1
8
ax-mp
⊢
1
≤
N
10
4
5
letri3i
⊢
N
=
1
↔
N
≤
1
∧
1
≤
N
11
9
10
mpbiran2
⊢
N
=
1
↔
N
≤
1
12
0le1
⊢
0
≤
1
13
5
12
pm3.2i
⊢
1
∈
ℝ
∧
0
≤
1
14
2re
⊢
2
∈
ℝ
15
1nn
⊢
1
∈
ℕ
16
nn0nnaddcl
⊢
K
∈
ℕ
0
∧
1
∈
ℕ
→
K
+
1
∈
ℕ
17
2
15
16
mp2an
⊢
K
+
1
∈
ℕ
18
17
nnnn0i
⊢
K
+
1
∈
ℕ
0
19
2nn0
⊢
2
∈
ℕ
0
20
18
19
nn0expcli
⊢
K
+
1
2
∈
ℕ
0
21
reexpcl
⊢
2
∈
ℝ
∧
K
+
1
2
∈
ℕ
0
→
2
K
+
1
2
∈
ℝ
22
14
20
21
mp2an
⊢
2
K
+
1
2
∈
ℝ
23
13
22
pm3.2i
⊢
1
∈
ℝ
∧
0
≤
1
∧
2
K
+
1
2
∈
ℝ
24
3
nn0rei
⊢
M
∈
ℝ
25
3
nn0ge0i
⊢
0
≤
M
26
24
25
pm3.2i
⊢
M
∈
ℝ
∧
0
≤
M
27
nn0nnaddcl
⊢
M
∈
ℕ
0
∧
K
+
1
∈
ℕ
→
M
+
K
+
1
∈
ℕ
28
3
17
27
mp2an
⊢
M
+
K
+
1
∈
ℕ
29
28
nnnn0i
⊢
M
+
K
+
1
∈
ℕ
0
30
3
29
nn0expcli
⊢
M
M
+
K
+
1
∈
ℕ
0
31
30
nn0rei
⊢
M
M
+
K
+
1
∈
ℝ
32
26
31
pm3.2i
⊢
M
∈
ℝ
∧
0
≤
M
∧
M
M
+
K
+
1
∈
ℝ
33
23
32
pm3.2i
⊢
1
∈
ℝ
∧
0
≤
1
∧
2
K
+
1
2
∈
ℝ
∧
M
∈
ℝ
∧
0
≤
M
∧
M
M
+
K
+
1
∈
ℝ
34
2cn
⊢
2
∈
ℂ
35
exp0
⊢
2
∈
ℂ
→
2
0
=
1
36
34
35
ax-mp
⊢
2
0
=
1
37
1le2
⊢
1
≤
2
38
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
39
20
38
eleqtri
⊢
K
+
1
2
∈
ℤ
≥
0
40
leexp2a
⊢
2
∈
ℝ
∧
1
≤
2
∧
K
+
1
2
∈
ℤ
≥
0
→
2
0
≤
2
K
+
1
2
41
14
37
39
40
mp3an
⊢
2
0
≤
2
K
+
1
2
42
36
41
eqbrtrri
⊢
1
≤
2
K
+
1
2
43
elnn0
⊢
M
∈
ℕ
0
↔
M
∈
ℕ
∨
M
=
0
44
nncn
⊢
M
∈
ℕ
→
M
∈
ℂ
45
44
exp1d
⊢
M
∈
ℕ
→
M
1
=
M
46
nnge1
⊢
M
∈
ℕ
→
1
≤
M
47
nnuz
⊢
ℕ
=
ℤ
≥
1
48
28
47
eleqtri
⊢
M
+
K
+
1
∈
ℤ
≥
1
49
leexp2a
⊢
M
∈
ℝ
∧
1
≤
M
∧
M
+
K
+
1
∈
ℤ
≥
1
→
M
1
≤
M
M
+
K
+
1
50
24
48
49
mp3an13
⊢
1
≤
M
→
M
1
≤
M
M
+
K
+
1
51
46
50
syl
⊢
M
∈
ℕ
→
M
1
≤
M
M
+
K
+
1
52
45
51
eqbrtrrd
⊢
M
∈
ℕ
→
M
≤
M
M
+
K
+
1
53
30
nn0ge0i
⊢
0
≤
M
M
+
K
+
1
54
breq1
⊢
M
=
0
→
M
≤
M
M
+
K
+
1
↔
0
≤
M
M
+
K
+
1
55
53
54
mpbiri
⊢
M
=
0
→
M
≤
M
M
+
K
+
1
56
52
55
jaoi
⊢
M
∈
ℕ
∨
M
=
0
→
M
≤
M
M
+
K
+
1
57
43
56
sylbi
⊢
M
∈
ℕ
0
→
M
≤
M
M
+
K
+
1
58
3
57
ax-mp
⊢
M
≤
M
M
+
K
+
1
59
42
58
pm3.2i
⊢
1
≤
2
K
+
1
2
∧
M
≤
M
M
+
K
+
1
60
lemul12a
⊢
1
∈
ℝ
∧
0
≤
1
∧
2
K
+
1
2
∈
ℝ
∧
M
∈
ℝ
∧
0
≤
M
∧
M
M
+
K
+
1
∈
ℝ
→
1
≤
2
K
+
1
2
∧
M
≤
M
M
+
K
+
1
→
1
⋅
M
≤
2
K
+
1
2
M
M
+
K
+
1
61
33
59
60
mp2
⊢
1
⋅
M
≤
2
K
+
1
2
M
M
+
K
+
1
62
oveq1
⊢
N
=
1
→
N
K
+
1
=
1
K
+
1
63
17
nnzi
⊢
K
+
1
∈
ℤ
64
1exp
⊢
K
+
1
∈
ℤ
→
1
K
+
1
=
1
65
63
64
ax-mp
⊢
1
K
+
1
=
1
66
62
65
eqtrdi
⊢
N
=
1
→
N
K
+
1
=
1
67
oveq2
⊢
N
=
1
→
M
N
=
M
1
68
3
nn0cni
⊢
M
∈
ℂ
69
exp1
⊢
M
∈
ℂ
→
M
1
=
M
70
68
69
ax-mp
⊢
M
1
=
M
71
67
70
eqtrdi
⊢
N
=
1
→
M
N
=
M
72
66
71
oveq12d
⊢
N
=
1
→
N
K
+
1
M
N
=
1
⋅
M
73
fveq2
⊢
N
=
1
→
N
!
=
1
!
74
fac1
⊢
1
!
=
1
75
73
74
eqtrdi
⊢
N
=
1
→
N
!
=
1
76
75
oveq2d
⊢
N
=
1
→
2
K
+
1
2
M
M
+
K
+
1
N
!
=
2
K
+
1
2
M
M
+
K
+
1
⋅
1
77
22
recni
⊢
2
K
+
1
2
∈
ℂ
78
30
nn0cni
⊢
M
M
+
K
+
1
∈
ℂ
79
77
78
mulcli
⊢
2
K
+
1
2
M
M
+
K
+
1
∈
ℂ
80
79
mulridi
⊢
2
K
+
1
2
M
M
+
K
+
1
⋅
1
=
2
K
+
1
2
M
M
+
K
+
1
81
76
80
eqtrdi
⊢
N
=
1
→
2
K
+
1
2
M
M
+
K
+
1
N
!
=
2
K
+
1
2
M
M
+
K
+
1
82
72
81
breq12d
⊢
N
=
1
→
N
K
+
1
M
N
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
↔
1
⋅
M
≤
2
K
+
1
2
M
M
+
K
+
1
83
61
82
mpbiri
⊢
N
=
1
→
N
K
+
1
M
N
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
84
11
83
sylbir
⊢
N
≤
1
→
N
K
+
1
M
N
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
85
84
adantr
⊢
N
≤
1
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
+
1
M
N
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
86
reexpcl
⊢
N
∈
ℝ
∧
K
+
1
∈
ℕ
0
→
N
K
+
1
∈
ℝ
87
4
18
86
mp2an
⊢
N
K
+
1
∈
ℝ
88
1
nnnn0i
⊢
N
∈
ℕ
0
89
reexpcl
⊢
M
∈
ℝ
∧
N
∈
ℕ
0
→
M
N
∈
ℝ
90
24
88
89
mp2an
⊢
M
N
∈
ℝ
91
87
90
remulcli
⊢
N
K
+
1
M
N
∈
ℝ
92
91
a1i
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
+
1
M
N
∈
ℝ
93
2
19
nn0expcli
⊢
K
2
∈
ℕ
0
94
reexpcl
⊢
2
∈
ℝ
∧
K
2
∈
ℕ
0
→
2
K
2
∈
ℝ
95
14
93
94
mp2an
⊢
2
K
2
∈
ℝ
96
19
2
nn0expcli
⊢
2
K
∈
ℕ
0
97
96
nn0rei
⊢
2
K
∈
ℝ
98
95
97
remulcli
⊢
2
K
2
2
K
∈
ℝ
99
faccl
⊢
N
∈
ℕ
0
→
N
!
∈
ℕ
100
88
99
ax-mp
⊢
N
!
∈
ℕ
101
100
nnnn0i
⊢
N
!
∈
ℕ
0
102
30
101
nn0mulcli
⊢
M
M
+
K
+
1
N
!
∈
ℕ
0
103
102
nn0rei
⊢
M
M
+
K
+
1
N
!
∈
ℝ
104
98
103
remulcli
⊢
2
K
2
2
K
M
M
+
K
+
1
N
!
∈
ℝ
105
104
a1i
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
2
K
2
2
K
M
M
+
K
+
1
N
!
∈
ℝ
106
22
103
remulcli
⊢
2
K
+
1
2
M
M
+
K
+
1
N
!
∈
ℝ
107
106
a1i
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
2
K
+
1
2
M
M
+
K
+
1
N
!
∈
ℝ
108
1
nncni
⊢
N
∈
ℂ
109
expp1
⊢
N
∈
ℂ
∧
K
∈
ℕ
0
→
N
K
+
1
=
N
K
⋅
N
110
108
2
109
mp2an
⊢
N
K
+
1
=
N
K
⋅
N
111
expm1t
⊢
M
∈
ℂ
∧
N
∈
ℕ
→
M
N
=
M
N
−
1
⋅
M
112
68
1
111
mp2an
⊢
M
N
=
M
N
−
1
⋅
M
113
110
112
oveq12i
⊢
N
K
+
1
M
N
=
N
K
⋅
N
M
N
−
1
⋅
M
114
reexpcl
⊢
N
∈
ℝ
∧
K
∈
ℕ
0
→
N
K
∈
ℝ
115
4
2
114
mp2an
⊢
N
K
∈
ℝ
116
115
recni
⊢
N
K
∈
ℂ
117
elnnnn0
⊢
N
∈
ℕ
↔
N
∈
ℂ
∧
N
−
1
∈
ℕ
0
118
1
117
mpbi
⊢
N
∈
ℂ
∧
N
−
1
∈
ℕ
0
119
118
simpri
⊢
N
−
1
∈
ℕ
0
120
3
119
nn0expcli
⊢
M
N
−
1
∈
ℕ
0
121
120
3
nn0mulcli
⊢
M
N
−
1
⋅
M
∈
ℕ
0
122
121
nn0cni
⊢
M
N
−
1
⋅
M
∈
ℂ
123
116
108
122
mulassi
⊢
N
K
⋅
N
M
N
−
1
⋅
M
=
N
K
N
M
N
−
1
⋅
M
124
113
123
eqtri
⊢
N
K
+
1
M
N
=
N
K
N
M
N
−
1
⋅
M
125
88
121
nn0mulcli
⊢
N
M
N
−
1
⋅
M
∈
ℕ
0
126
125
nn0rei
⊢
N
M
N
−
1
⋅
M
∈
ℝ
127
115
126
remulcli
⊢
N
K
N
M
N
−
1
⋅
M
∈
ℝ
128
127
a1i
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
N
M
N
−
1
⋅
M
∈
ℝ
129
119
nn0rei
⊢
N
−
1
∈
ℝ
130
reexpcl
⊢
N
−
1
∈
ℝ
∧
K
∈
ℕ
0
→
N
−
1
K
∈
ℝ
131
129
2
130
mp2an
⊢
N
−
1
K
∈
ℝ
132
120
nn0rei
⊢
M
N
−
1
∈
ℝ
133
131
132
remulcli
⊢
N
−
1
K
M
N
−
1
∈
ℝ
134
96
88
nn0mulcli
⊢
2
K
⋅
N
∈
ℕ
0
135
134
3
nn0mulcli
⊢
2
K
⋅
N
⋅
M
∈
ℕ
0
136
135
nn0rei
⊢
2
K
⋅
N
⋅
M
∈
ℝ
137
133
136
remulcli
⊢
N
−
1
K
M
N
−
1
2
K
⋅
N
⋅
M
∈
ℝ
138
137
a1i
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
−
1
K
M
N
−
1
2
K
⋅
N
⋅
M
∈
ℝ
139
3
2
nn0addcli
⊢
M
+
K
∈
ℕ
0
140
reexpcl
⊢
M
∈
ℝ
∧
M
+
K
∈
ℕ
0
→
M
M
+
K
∈
ℝ
141
24
139
140
mp2an
⊢
M
M
+
K
∈
ℝ
142
95
141
remulcli
⊢
2
K
2
M
M
+
K
∈
ℝ
143
faccl
⊢
N
−
1
∈
ℕ
0
→
N
−
1
!
∈
ℕ
144
119
143
ax-mp
⊢
N
−
1
!
∈
ℕ
145
144
nnrei
⊢
N
−
1
!
∈
ℝ
146
142
145
remulcli
⊢
2
K
2
M
M
+
K
N
−
1
!
∈
ℝ
147
146
136
remulcli
⊢
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
N
⋅
M
∈
ℝ
148
147
a1i
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
N
⋅
M
∈
ℝ
149
97
131
remulcli
⊢
2
K
N
−
1
K
∈
ℝ
150
125
nn0ge0i
⊢
0
≤
N
M
N
−
1
⋅
M
151
126
150
pm3.2i
⊢
N
M
N
−
1
⋅
M
∈
ℝ
∧
0
≤
N
M
N
−
1
⋅
M
152
115
149
151
3pm3.2i
⊢
N
K
∈
ℝ
∧
2
K
N
−
1
K
∈
ℝ
∧
N
M
N
−
1
⋅
M
∈
ℝ
∧
0
≤
N
M
N
−
1
⋅
M
153
nnltp1le
⊢
1
∈
ℕ
∧
N
∈
ℕ
→
1
<
N
↔
1
+
1
≤
N
154
15
1
153
mp2an
⊢
1
<
N
↔
1
+
1
≤
N
155
df-2
⊢
2
=
1
+
1
156
155
breq1i
⊢
2
≤
N
↔
1
+
1
≤
N
157
154
156
bitr4i
⊢
1
<
N
↔
2
≤
N
158
expubnd
⊢
N
∈
ℝ
∧
K
∈
ℕ
0
∧
2
≤
N
→
N
K
≤
2
K
N
−
1
K
159
4
2
158
mp3an12
⊢
2
≤
N
→
N
K
≤
2
K
N
−
1
K
160
157
159
sylbi
⊢
1
<
N
→
N
K
≤
2
K
N
−
1
K
161
lemul1a
⊢
N
K
∈
ℝ
∧
2
K
N
−
1
K
∈
ℝ
∧
N
M
N
−
1
⋅
M
∈
ℝ
∧
0
≤
N
M
N
−
1
⋅
M
∧
N
K
≤
2
K
N
−
1
K
→
N
K
N
M
N
−
1
⋅
M
≤
2
K
N
−
1
K
N
M
N
−
1
⋅
M
162
152
160
161
sylancr
⊢
1
<
N
→
N
K
N
M
N
−
1
⋅
M
≤
2
K
N
−
1
K
N
M
N
−
1
⋅
M
163
96
nn0cni
⊢
2
K
∈
ℂ
164
131
recni
⊢
N
−
1
K
∈
ℂ
165
163
164
108
122
mul4i
⊢
2
K
N
−
1
K
N
M
N
−
1
⋅
M
=
2
K
⋅
N
N
−
1
K
M
N
−
1
⋅
M
166
120
nn0cni
⊢
M
N
−
1
∈
ℂ
167
164
166
68
mulassi
⊢
N
−
1
K
M
N
−
1
⋅
M
=
N
−
1
K
M
N
−
1
⋅
M
168
167
oveq2i
⊢
2
K
⋅
N
N
−
1
K
M
N
−
1
⋅
M
=
2
K
⋅
N
N
−
1
K
M
N
−
1
⋅
M
169
134
nn0cni
⊢
2
K
⋅
N
∈
ℂ
170
133
recni
⊢
N
−
1
K
M
N
−
1
∈
ℂ
171
169
170
68
mul12i
⊢
2
K
⋅
N
N
−
1
K
M
N
−
1
⋅
M
=
N
−
1
K
M
N
−
1
2
K
⋅
N
⋅
M
172
165
168
171
3eqtr2i
⊢
2
K
N
−
1
K
N
M
N
−
1
⋅
M
=
N
−
1
K
M
N
−
1
2
K
⋅
N
⋅
M
173
162
172
breqtrdi
⊢
1
<
N
→
N
K
N
M
N
−
1
⋅
M
≤
N
−
1
K
M
N
−
1
2
K
⋅
N
⋅
M
174
173
adantr
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
N
M
N
−
1
⋅
M
≤
N
−
1
K
M
N
−
1
2
K
⋅
N
⋅
M
175
135
nn0ge0i
⊢
0
≤
2
K
⋅
N
⋅
M
176
136
175
pm3.2i
⊢
2
K
⋅
N
⋅
M
∈
ℝ
∧
0
≤
2
K
⋅
N
⋅
M
177
133
146
176
3pm3.2i
⊢
N
−
1
K
M
N
−
1
∈
ℝ
∧
2
K
2
M
M
+
K
N
−
1
!
∈
ℝ
∧
2
K
⋅
N
⋅
M
∈
ℝ
∧
0
≤
2
K
⋅
N
⋅
M
178
lemul1a
⊢
N
−
1
K
M
N
−
1
∈
ℝ
∧
2
K
2
M
M
+
K
N
−
1
!
∈
ℝ
∧
2
K
⋅
N
⋅
M
∈
ℝ
∧
0
≤
2
K
⋅
N
⋅
M
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
−
1
K
M
N
−
1
2
K
⋅
N
⋅
M
≤
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
N
⋅
M
179
177
178
mpan
⊢
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
−
1
K
M
N
−
1
2
K
⋅
N
⋅
M
≤
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
N
⋅
M
180
179
adantl
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
−
1
K
M
N
−
1
2
K
⋅
N
⋅
M
≤
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
N
⋅
M
181
128
138
148
174
180
letrd
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
N
M
N
−
1
⋅
M
≤
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
N
⋅
M
182
163
108
68
mul32i
⊢
2
K
⋅
N
⋅
M
=
2
K
⋅
M
⋅
N
183
182
oveq2i
⊢
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
N
⋅
M
=
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
M
⋅
N
184
expp1
⊢
M
∈
ℂ
∧
M
+
K
∈
ℕ
0
→
M
M
+
K
+
1
=
M
M
+
K
⋅
M
185
68
139
184
mp2an
⊢
M
M
+
K
+
1
=
M
M
+
K
⋅
M
186
2
nn0cni
⊢
K
∈
ℂ
187
ax-1cn
⊢
1
∈
ℂ
188
68
186
187
addassi
⊢
M
+
K
+
1
=
M
+
K
+
1
189
188
oveq2i
⊢
M
M
+
K
+
1
=
M
M
+
K
+
1
190
185
189
eqtr3i
⊢
M
M
+
K
⋅
M
=
M
M
+
K
+
1
191
190
oveq2i
⊢
2
K
2
2
K
M
M
+
K
⋅
M
=
2
K
2
2
K
M
M
+
K
+
1
192
95
recni
⊢
2
K
2
∈
ℂ
193
141
recni
⊢
M
M
+
K
∈
ℂ
194
192
163
193
68
mul4i
⊢
2
K
2
2
K
M
M
+
K
⋅
M
=
2
K
2
M
M
+
K
2
K
⋅
M
195
191
194
eqtr3i
⊢
2
K
2
2
K
M
M
+
K
+
1
=
2
K
2
M
M
+
K
2
K
⋅
M
196
facnn2
⊢
N
∈
ℕ
→
N
!
=
N
−
1
!
⋅
N
197
1
196
ax-mp
⊢
N
!
=
N
−
1
!
⋅
N
198
195
197
oveq12i
⊢
2
K
2
2
K
M
M
+
K
+
1
N
!
=
2
K
2
M
M
+
K
2
K
⋅
M
N
−
1
!
⋅
N
199
142
recni
⊢
2
K
2
M
M
+
K
∈
ℂ
200
144
nncni
⊢
N
−
1
!
∈
ℂ
201
163
68
mulcli
⊢
2
K
⋅
M
∈
ℂ
202
199
200
201
108
mul4i
⊢
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
M
⋅
N
=
2
K
2
M
M
+
K
2
K
⋅
M
N
−
1
!
⋅
N
203
198
202
eqtr4i
⊢
2
K
2
2
K
M
M
+
K
+
1
N
!
=
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
M
⋅
N
204
98
recni
⊢
2
K
2
2
K
∈
ℂ
205
100
nncni
⊢
N
!
∈
ℂ
206
204
78
205
mulassi
⊢
2
K
2
2
K
M
M
+
K
+
1
N
!
=
2
K
2
2
K
M
M
+
K
+
1
N
!
207
183
203
206
3eqtr2i
⊢
2
K
2
M
M
+
K
N
−
1
!
2
K
⋅
N
⋅
M
=
2
K
2
2
K
M
M
+
K
+
1
N
!
208
181
207
breqtrdi
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
N
M
N
−
1
⋅
M
≤
2
K
2
2
K
M
M
+
K
+
1
N
!
209
124
208
eqbrtrid
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
+
1
M
N
≤
2
K
2
2
K
M
M
+
K
+
1
N
!
210
102
nn0ge0i
⊢
0
≤
M
M
+
K
+
1
N
!
211
103
210
pm3.2i
⊢
M
M
+
K
+
1
N
!
∈
ℝ
∧
0
≤
M
M
+
K
+
1
N
!
212
98
22
211
3pm3.2i
⊢
2
K
2
2
K
∈
ℝ
∧
2
K
+
1
2
∈
ℝ
∧
M
M
+
K
+
1
N
!
∈
ℝ
∧
0
≤
M
M
+
K
+
1
N
!
213
expadd
⊢
2
∈
ℂ
∧
K
2
∈
ℕ
0
∧
K
∈
ℕ
0
→
2
K
2
+
K
=
2
K
2
2
K
214
34
93
2
213
mp3an
⊢
2
K
2
+
K
=
2
K
2
2
K
215
20
nn0zi
⊢
K
+
1
2
∈
ℤ
216
2
nn0rei
⊢
K
∈
ℝ
217
17
nnrei
⊢
K
+
1
∈
ℝ
218
18
nn0ge0i
⊢
0
≤
K
+
1
219
217
218
pm3.2i
⊢
K
+
1
∈
ℝ
∧
0
≤
K
+
1
220
216
217
219
3pm3.2i
⊢
K
∈
ℝ
∧
K
+
1
∈
ℝ
∧
K
+
1
∈
ℝ
∧
0
≤
K
+
1
221
216
ltp1i
⊢
K
<
K
+
1
222
216
217
221
ltleii
⊢
K
≤
K
+
1
223
lemul1a
⊢
K
∈
ℝ
∧
K
+
1
∈
ℝ
∧
K
+
1
∈
ℝ
∧
0
≤
K
+
1
∧
K
≤
K
+
1
→
K
K
+
1
≤
K
+
1
K
+
1
224
220
222
223
mp2an
⊢
K
K
+
1
≤
K
+
1
K
+
1
225
186
sqvali
⊢
K
2
=
K
K
226
186
mulridi
⊢
K
⋅
1
=
K
227
226
eqcomi
⊢
K
=
K
⋅
1
228
225
227
oveq12i
⊢
K
2
+
K
=
K
K
+
K
⋅
1
229
186
186
187
adddii
⊢
K
K
+
1
=
K
K
+
K
⋅
1
230
228
229
eqtr4i
⊢
K
2
+
K
=
K
K
+
1
231
17
nncni
⊢
K
+
1
∈
ℂ
232
231
sqvali
⊢
K
+
1
2
=
K
+
1
K
+
1
233
224
230
232
3brtr4i
⊢
K
2
+
K
≤
K
+
1
2
234
93
2
nn0addcli
⊢
K
2
+
K
∈
ℕ
0
235
234
nn0zi
⊢
K
2
+
K
∈
ℤ
236
235
eluz1i
⊢
K
+
1
2
∈
ℤ
≥
K
2
+
K
↔
K
+
1
2
∈
ℤ
∧
K
2
+
K
≤
K
+
1
2
237
215
233
236
mpbir2an
⊢
K
+
1
2
∈
ℤ
≥
K
2
+
K
238
leexp2a
⊢
2
∈
ℝ
∧
1
≤
2
∧
K
+
1
2
∈
ℤ
≥
K
2
+
K
→
2
K
2
+
K
≤
2
K
+
1
2
239
14
37
237
238
mp3an
⊢
2
K
2
+
K
≤
2
K
+
1
2
240
214
239
eqbrtrri
⊢
2
K
2
2
K
≤
2
K
+
1
2
241
lemul1a
⊢
2
K
2
2
K
∈
ℝ
∧
2
K
+
1
2
∈
ℝ
∧
M
M
+
K
+
1
N
!
∈
ℝ
∧
0
≤
M
M
+
K
+
1
N
!
∧
2
K
2
2
K
≤
2
K
+
1
2
→
2
K
2
2
K
M
M
+
K
+
1
N
!
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
242
212
240
241
mp2an
⊢
2
K
2
2
K
M
M
+
K
+
1
N
!
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
243
242
a1i
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
2
K
2
2
K
M
M
+
K
+
1
N
!
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
244
92
105
107
209
243
letrd
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
+
1
M
N
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
245
77
78
205
mulassi
⊢
2
K
+
1
2
M
M
+
K
+
1
N
!
=
2
K
+
1
2
M
M
+
K
+
1
N
!
246
244
245
breqtrrdi
⊢
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
+
1
M
N
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
247
85
246
jaoian
⊢
N
≤
1
∨
1
<
N
∧
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
+
1
M
N
≤
2
K
+
1
2
M
M
+
K
+
1
N
!
248
7
247
mpan
⊢
N
−
1
K
M
N
−
1
≤
2
K
2
M
M
+
K
N
−
1
!
→
N
K
+
1
M
N
≤
2
K
+
1
2
M
M
+
K
+
1
N
!