Metamath Proof Explorer


Theorem faclbnd4lem4

Description: Lemma for faclbnd4 . Prove the 0 < N case by induction on K . (Contributed by NM, 19-Dec-2005)

Ref Expression
Assertion faclbnd4lem4 NK0M0NKMN2K2MM+KN!

Proof

Step Hyp Ref Expression
1 oveq1 n=mnj=mj
2 oveq2 n=mMn=Mm
3 1 2 oveq12d n=mnjMn=mjMm
4 fveq2 n=mn!=m!
5 4 oveq2d n=m2j2MM+jn!=2j2MM+jm!
6 3 5 breq12d n=mnjMn2j2MM+jn!mjMm2j2MM+jm!
7 6 cbvralvw nnjMn2j2MM+jn!mmjMm2j2MM+jm!
8 nnre nn
9 1re 1
10 lelttric n1n11<n
11 8 9 10 sylancl nn11<n
12 11 ancli nnn11<n
13 andi nn11<nnn1n1<n
14 12 13 sylib nnn1n1<n
15 nnge1 n1n
16 letri3 n1n=1n11n
17 8 9 16 sylancl nn=1n11n
18 17 biimpar nn11nn=1
19 18 anassrs nn11nn=1
20 15 19 mpidan nn1n=1
21 oveq1 n=1n1=11
22 1m1e0 11=0
23 21 22 eqtrdi n=1n1=0
24 20 23 syl nn1n1=0
25 faclbnd4lem3 M0j0n1=0n1jMn12j2MM+jn1!
26 24 25 sylan2 M0j0nn1n1jMn12j2MM+jn1!
27 26 a1d M0j0nn1mmjMm2j2MM+jm!n1jMn12j2MM+jn1!
28 1nn 1
29 nnsub 1n1<nn1
30 28 29 mpan n1<nn1
31 30 biimpa n1<nn1
32 oveq1 m=n1mj=n1j
33 oveq2 m=n1Mm=Mn1
34 32 33 oveq12d m=n1mjMm=n1jMn1
35 fveq2 m=n1m!=n1!
36 35 oveq2d m=n12j2MM+jm!=2j2MM+jn1!
37 34 36 breq12d m=n1mjMm2j2MM+jm!n1jMn12j2MM+jn1!
38 37 rspcv n1mmjMm2j2MM+jm!n1jMn12j2MM+jn1!
39 31 38 syl n1<nmmjMm2j2MM+jm!n1jMn12j2MM+jn1!
40 39 adantl M0j0n1<nmmjMm2j2MM+jm!n1jMn12j2MM+jn1!
41 27 40 jaodan M0j0nn1n1<nmmjMm2j2MM+jm!n1jMn12j2MM+jn1!
42 14 41 sylan2 M0j0nmmjMm2j2MM+jm!n1jMn12j2MM+jn1!
43 faclbnd4lem2 M0j0nn1jMn12j2MM+jn1!nj+1Mn2j+12MM+j+1n!
44 43 3expa M0j0nn1jMn12j2MM+jn1!nj+1Mn2j+12MM+j+1n!
45 42 44 syld M0j0nmmjMm2j2MM+jm!nj+1Mn2j+12MM+j+1n!
46 45 ralrimdva M0j0mmjMm2j2MM+jm!nnj+1Mn2j+12MM+j+1n!
47 7 46 biimtrid M0j0nnjMn2j2MM+jn!nnj+1Mn2j+12MM+j+1n!
48 47 expcom j0M0nnjMn2j2MM+jn!nnj+1Mn2j+12MM+j+1n!
49 48 a2d j0M0nnjMn2j2MM+jn!M0nnj+1Mn2j+12MM+j+1n!
50 nnnn0 nn0
51 faclbnd3 M0n0MnMMn!
52 50 51 sylan2 M0nMnMMn!
53 nncn nn
54 53 exp0d nn0=1
55 54 oveq1d nn0Mn=1Mn
56 55 adantl M0nn0Mn=1Mn
57 nn0cn M0M
58 expcl Mn0Mn
59 57 50 58 syl2an M0nMn
60 59 mullidd M0n1Mn=Mn
61 56 60 eqtrd M0nn0Mn=Mn
62 sq0 02=0
63 62 oveq2i 202=20
64 2cn 2
65 exp0 220=1
66 64 65 ax-mp 20=1
67 63 66 eqtri 202=1
68 67 a1i M0202=1
69 57 addridd M0M+0=M
70 69 oveq2d M0MM+0=MM
71 68 70 oveq12d M0202MM+0=1MM
72 expcl MM0MM
73 57 72 mpancom M0MM
74 73 mullidd M01MM=MM
75 71 74 eqtrd M0202MM+0=MM
76 75 oveq1d M0202MM+0n!=MMn!
77 76 adantr M0n202MM+0n!=MMn!
78 52 61 77 3brtr4d M0nn0Mn202MM+0n!
79 78 ralrimiva M0nn0Mn202MM+0n!
80 oveq2 m=0nm=n0
81 80 oveq1d m=0nmMn=n0Mn
82 oveq1 m=0m2=02
83 82 oveq2d m=02m2=202
84 oveq2 m=0M+m=M+0
85 84 oveq2d m=0MM+m=MM+0
86 83 85 oveq12d m=02m2MM+m=202MM+0
87 86 oveq1d m=02m2MM+mn!=202MM+0n!
88 81 87 breq12d m=0nmMn2m2MM+mn!n0Mn202MM+0n!
89 88 ralbidv m=0nnmMn2m2MM+mn!nn0Mn202MM+0n!
90 89 imbi2d m=0M0nnmMn2m2MM+mn!M0nn0Mn202MM+0n!
91 oveq2 m=jnm=nj
92 91 oveq1d m=jnmMn=njMn
93 oveq1 m=jm2=j2
94 93 oveq2d m=j2m2=2j2
95 oveq2 m=jM+m=M+j
96 95 oveq2d m=jMM+m=MM+j
97 94 96 oveq12d m=j2m2MM+m=2j2MM+j
98 97 oveq1d m=j2m2MM+mn!=2j2MM+jn!
99 92 98 breq12d m=jnmMn2m2MM+mn!njMn2j2MM+jn!
100 99 ralbidv m=jnnmMn2m2MM+mn!nnjMn2j2MM+jn!
101 100 imbi2d m=jM0nnmMn2m2MM+mn!M0nnjMn2j2MM+jn!
102 oveq2 m=j+1nm=nj+1
103 102 oveq1d m=j+1nmMn=nj+1Mn
104 oveq1 m=j+1m2=j+12
105 104 oveq2d m=j+12m2=2j+12
106 oveq2 m=j+1M+m=M+j+1
107 106 oveq2d m=j+1MM+m=MM+j+1
108 105 107 oveq12d m=j+12m2MM+m=2j+12MM+j+1
109 108 oveq1d m=j+12m2MM+mn!=2j+12MM+j+1n!
110 103 109 breq12d m=j+1nmMn2m2MM+mn!nj+1Mn2j+12MM+j+1n!
111 110 ralbidv m=j+1nnmMn2m2MM+mn!nnj+1Mn2j+12MM+j+1n!
112 111 imbi2d m=j+1M0nnmMn2m2MM+mn!M0nnj+1Mn2j+12MM+j+1n!
113 oveq2 m=Knm=nK
114 113 oveq1d m=KnmMn=nKMn
115 oveq1 m=Km2=K2
116 115 oveq2d m=K2m2=2K2
117 oveq2 m=KM+m=M+K
118 117 oveq2d m=KMM+m=MM+K
119 116 118 oveq12d m=K2m2MM+m=2K2MM+K
120 119 oveq1d m=K2m2MM+mn!=2K2MM+Kn!
121 114 120 breq12d m=KnmMn2m2MM+mn!nKMn2K2MM+Kn!
122 121 ralbidv m=KnnmMn2m2MM+mn!nnKMn2K2MM+Kn!
123 122 imbi2d m=KM0nnmMn2m2MM+mn!M0nnKMn2K2MM+Kn!
124 49 79 90 101 112 123 nn0indALT K0M0nnKMn2K2MM+Kn!
125 124 imp K0M0nnKMn2K2MM+Kn!
126 oveq1 n=NnK=NK
127 oveq2 n=NMn=MN
128 126 127 oveq12d n=NnKMn=NKMN
129 fveq2 n=Nn!=N!
130 129 oveq2d n=N2K2MM+Kn!=2K2MM+KN!
131 128 130 breq12d n=NnKMn2K2MM+Kn!NKMN2K2MM+KN!
132 131 rspcva NnnKMn2K2MM+Kn!NKMN2K2MM+KN!
133 125 132 sylan2 NK0M0NKMN2K2MM+KN!
134 133 3impb NK0M0NKMN2K2MM+KN!