Metamath Proof Explorer


Theorem fin1a2lem13

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin1a2lem13 A𝒫B[⊂]OrA¬AA¬CFinCA¬BCFinII

Proof

Step Hyp Ref Expression
1 simpr A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIBCFinII
2 simpll1 A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIA𝒫B
3 ssel2 A𝒫BgAg𝒫B
4 3 elpwid A𝒫BgAgB
5 4 ssdifd A𝒫BgAgCBC
6 sseq1 f=gCfBCgCBC
7 5 6 syl5ibrcom A𝒫BgAf=gCfBC
8 7 rexlimdva A𝒫BgAf=gCfBC
9 eqid gAgC=gAgC
10 9 elrnmpt fVfrangAgCgAf=gC
11 10 elv frangAgCgAf=gC
12 velpw f𝒫BCfBC
13 8 11 12 3imtr4g A𝒫BfrangAgCf𝒫BC
14 13 ssrdv A𝒫BrangAgC𝒫BC
15 2 14 syl A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIrangAgC𝒫BC
16 simplrr A𝒫B[⊂]OrA¬AA¬CFinCABCFinIICA
17 difid CC=
18 17 eqcomi =CC
19 difeq1 g=CgC=CC
20 19 rspceeqv CA=CCgA=gC
21 18 20 mpan2 CAgA=gC
22 0ex V
23 9 elrnmpt VrangAgCgA=gC
24 22 23 ax-mp rangAgCgA=gC
25 21 24 sylibr CArangAgC
26 ne0i rangAgCrangAgC
27 16 25 26 3syl A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIrangAgC
28 simpll2 A𝒫B[⊂]OrA¬AA¬CFinCABCFinII[⊂]OrA
29 9 elrnmpt xVxrangAgCgAx=gC
30 29 elv xrangAgCgAx=gC
31 difeq1 g=egC=eC
32 31 eqeq2d g=ex=gCx=eC
33 32 cbvrexvw gAx=gCeAx=eC
34 sorpssi [⊂]OrAeAgAegge
35 ssdif egeCgC
36 ssdif gegCeC
37 35 36 orim12i eggeeCgCgCeC
38 34 37 syl [⊂]OrAeAgAeCgCgCeC
39 sseq2 f=gCeCfeCgC
40 sseq1 f=gCfeCgCeC
41 39 40 orbi12d f=gCeCffeCeCgCgCeC
42 38 41 syl5ibrcom [⊂]OrAeAgAf=gCeCffeC
43 42 expr [⊂]OrAeAgAf=gCeCffeC
44 43 rexlimdv [⊂]OrAeAgAf=gCeCffeC
45 11 44 biimtrid [⊂]OrAeAfrangAgCeCffeC
46 45 ralrimiv [⊂]OrAeAfrangAgCeCffeC
47 sseq1 x=eCxfeCf
48 sseq2 x=eCfxfeC
49 47 48 orbi12d x=eCxffxeCffeC
50 49 ralbidv x=eCfrangAgCxffxfrangAgCeCffeC
51 46 50 syl5ibrcom [⊂]OrAeAx=eCfrangAgCxffx
52 51 rexlimdva [⊂]OrAeAx=eCfrangAgCxffx
53 33 52 biimtrid [⊂]OrAgAx=gCfrangAgCxffx
54 30 53 biimtrid [⊂]OrAxrangAgCfrangAgCxffx
55 54 ralrimiv [⊂]OrAxrangAgCfrangAgCxffx
56 sorpss [⊂]OrrangAgCxrangAgCfrangAgCxffx
57 55 56 sylibr [⊂]OrA[⊂]OrrangAgC
58 28 57 syl A𝒫B[⊂]OrA¬AA¬CFinCABCFinII[⊂]OrrangAgC
59 fin2i BCFinIIrangAgC𝒫BCrangAgC[⊂]OrrangAgCrangAgCrangAgC
60 1 15 27 58 59 syl22anc A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIrangAgCrangAgC
61 simpll3 A𝒫B[⊂]OrA¬AA¬CFinCABCFinII¬AA
62 difeq1 g=fgC=fC
63 62 cbvmptv gAgC=fAfC
64 63 elrnmpt rangAgCrangAgCrangAgCrangAgCfArangAgC=fC
65 64 ibi rangAgCrangAgCfArangAgC=fC
66 eqid hC=hC
67 difeq1 g=hgC=hC
68 67 rspceeqv hAhC=hCgAhC=gC
69 66 68 mpan2 hAgAhC=gC
70 69 adantl fArangAgC=fChAgAhC=gC
71 vex hV
72 difexg hVhCV
73 9 elrnmpt hCVhCrangAgCgAhC=gC
74 71 72 73 mp2b hCrangAgCgAhC=gC
75 70 74 sylibr fArangAgC=fChAhCrangAgC
76 elssuni hCrangAgChCrangAgC
77 75 76 syl fArangAgC=fChAhCrangAgC
78 simplr fArangAgC=fChArangAgC=fC
79 77 78 sseqtrd fArangAgC=fChAhCfC
80 79 adantll A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAhCfC
81 unss2 hCfCChCCfC
82 uncom ChC=hCC
83 undif1 hCC=hC
84 82 83 eqtri ChC=hC
85 84 a1i A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAChC=hC
86 61 ad2antrr A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChA¬AA
87 16 ad2antrr A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChACA
88 simplrr A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChArangAgC=fC
89 eqeq1 e=xCe=xC=
90 simpllr CArangAgC=fCfCxArangAgC=fC
91 ssdif0 fCfC=
92 91 biimpi fCfC=
93 92 ad2antlr CArangAgC=fCfCxAfC=
94 90 93 eqtrd CArangAgC=fCfCxArangAgC=
95 uni0c rangAgC=erangAgCe=
96 94 95 sylib CArangAgC=fCfCxAerangAgCe=
97 eqid xC=xC
98 difeq1 g=xgC=xC
99 98 rspceeqv xAxC=xCgAxC=gC
100 97 99 mpan2 xAgAxC=gC
101 vex xV
102 difexg xVxCV
103 9 elrnmpt xCVxCrangAgCgAxC=gC
104 101 102 103 mp2b xCrangAgCgAxC=gC
105 100 104 sylibr xAxCrangAgC
106 105 adantl CArangAgC=fCfCxAxCrangAgC
107 89 96 106 rspcdva CArangAgC=fCfCxAxC=
108 ssdif0 xCxC=
109 107 108 sylibr CArangAgC=fCfCxAxC
110 109 ralrimiva CArangAgC=fCfCxAxC
111 unissb ACxAxC
112 110 111 sylibr CArangAgC=fCfCAC
113 elssuni CACA
114 113 ad2antrr CArangAgC=fCfCCA
115 112 114 eqssd CArangAgC=fCfCA=C
116 simpll CArangAgC=fCfCCA
117 115 116 eqeltrd CArangAgC=fCfCAA
118 117 ex CArangAgC=fCfCAA
119 87 88 118 syl2anc A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAfCAA
120 86 119 mtod A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChA¬fC
121 28 ad2antrr A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChA[⊂]OrA
122 simplrl A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAfA
123 sorpssi [⊂]OrAfACAfCCf
124 121 122 87 123 syl12anc A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAfCCf
125 orel1 ¬fCfCCfCf
126 120 124 125 sylc A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChACf
127 undif CfCfC=f
128 126 127 sylib A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChACfC=f
129 85 128 sseq12d A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAChCCfChCf
130 ssun1 hhC
131 sstr hhChCfhf
132 130 131 mpan hCfhf
133 129 132 syl6bi A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAChCCfChf
134 81 133 syl5 A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAhCfChf
135 80 134 mpd A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAhf
136 135 ralrimiva A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fChAhf
137 unissb AfhAhf
138 136 137 sylibr A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fCAf
139 elssuni fAfA
140 139 ad2antrl A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fCfA
141 138 140 eqssd A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fCA=f
142 simprl A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fCfA
143 141 142 eqeltrd A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fCAA
144 143 rexlimdvaa A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIfArangAgC=fCAA
145 65 144 syl5 A𝒫B[⊂]OrA¬AA¬CFinCABCFinIIrangAgCrangAgCAA
146 61 145 mtod A𝒫B[⊂]OrA¬AA¬CFinCABCFinII¬rangAgCrangAgC
147 60 146 pm2.65da A𝒫B[⊂]OrA¬AA¬CFinCA¬BCFinII