Metamath Proof Explorer


Theorem finfdm

Description: The domain of the inf function is defined in Proposition 121F (c) of Fremlin1, p. 39. See smfinf . Note that this definition of the inf function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fifth statement of Proposition 121H in Fremlin1, p. 39. (Contributed by Glauco Siliprandi, 1-Feb-2025)

Ref Expression
Hypotheses finfdm.1 nφ
finfdm.2 xφ
finfdm.3 mφ
finfdm.4 _xF
finfdm.5 φnZFn:domFn*
finfdm.6 D=xnZdomFn|ynZyFnx
finfdm.7 H=nZmxdomFn|m<Fnx
Assertion finfdm φD=mnZHnm

Proof

Step Hyp Ref Expression
1 finfdm.1 nφ
2 finfdm.2 xφ
3 finfdm.3 mφ
4 finfdm.4 _xF
5 finfdm.5 φnZFn:domFn*
6 finfdm.6 D=xnZdomFn|ynZyFnx
7 finfdm.7 H=nZmxdomFn|m<Fnx
8 nfcv _x
9 nfcv _xZ
10 nfrab1 _xxdomFn|m<Fnx
11 8 10 nfmpt _xmxdomFn|m<Fnx
12 9 11 nfmpt _xnZmxdomFn|m<Fnx
13 7 12 nfcxfr _xH
14 nfcv _xn
15 13 14 nffv _xHn
16 nfcv _xm
17 15 16 nffv _xHnm
18 9 17 nfiin _xnZHnm
19 8 18 nfiun _xmnZHnm
20 nfv mxnZdomFn
21 3 20 nfan mφxnZdomFn
22 nfv my
23 21 22 nfan mφxnZdomFny
24 nfv mnZyFnx
25 23 24 nfan mφxnZdomFnynZyFnx
26 nfii1 _nnZdomFn
27 26 nfel2 nxnZdomFn
28 1 27 nfan nφxnZdomFn
29 nfv ny
30 28 29 nfan nφxnZdomFny
31 nfra1 nnZyFnx
32 30 31 nfan nφxnZdomFnynZyFnx
33 nfv nm
34 nfv ny<m
35 32 33 34 nf3an nφxnZdomFnynZyFnxmy<m
36 vex xV
37 36 a1i φxnZdomFnynZyFnxmy<mxV
38 simp-4r φxnZdomFnynZyFnxnZxnZdomFn
39 38 3ad2antl1 φxnZdomFnynZyFnxmy<mnZxnZdomFn
40 simpr φxnZdomFnynZyFnxmy<mnZnZ
41 eliinid xnZdomFnnZxdomFn
42 39 40 41 syl2anc φxnZdomFnynZyFnxmy<mnZxdomFn
43 simpl2 φxnZdomFnynZyFnxmy<mnZm
44 nnre mm
45 44 renegcld mm
46 45 rexrd mm*
47 43 46 syl φxnZdomFnynZyFnxmy<mnZm*
48 simpllr φxnZdomFnynZyFnxnZy
49 rexr yy*
50 48 49 syl φxnZdomFnynZyFnxnZy*
51 50 3ad2antl1 φxnZdomFnynZyFnxmy<mnZy*
52 simp-4l φxnZdomFnynZyFnxnZφ
53 52 3ad2antl1 φxnZdomFnynZyFnxmy<mnZφ
54 5 3adant3 φnZxdomFnFn:domFn*
55 simp3 φnZxdomFnxdomFn
56 54 55 ffvelcdmd φnZxdomFnFnx*
57 53 40 42 56 syl3anc φxnZdomFnynZyFnxmy<mnZFnx*
58 48 3ad2antl1 φxnZdomFnynZyFnxmy<mnZy
59 simpl3 φxnZdomFnynZyFnxmy<mnZy<m
60 simp1 ymy<my
61 44 3ad2ant2 ymy<mm
62 simp3 ymy<my<m
63 60 61 62 ltnegcon1d ymy<mm<y
64 58 43 59 63 syl3anc φxnZdomFnynZyFnxmy<mnZm<y
65 simpl1r φxnZdomFnynZyFnxmy<mnZnZyFnx
66 rspa nZyFnxnZyFnx
67 65 40 66 syl2anc φxnZdomFnynZyFnxmy<mnZyFnx
68 47 51 57 64 67 xrltletrd φxnZdomFnynZyFnxmy<mnZm<Fnx
69 42 68 rabidd φxnZdomFnynZyFnxmy<mnZxxdomFn|m<Fnx
70 id nZnZ
71 nnex V
72 71 mptex mxdomFn|m<FnxV
73 72 a1i nZmxdomFn|m<FnxV
74 7 fvmpt2 nZmxdomFn|m<FnxVHn=mxdomFn|m<Fnx
75 70 73 74 syl2anc nZHn=mxdomFn|m<Fnx
76 4 14 nffv _xFn
77 76 nfdm _xdomFn
78 fvex FnV
79 78 dmex domFnV
80 77 79 rabexf xdomFn|m<FnxV
81 80 a1i nZmxdomFn|m<FnxV
82 75 81 fvmpt2d nZmHnm=xdomFn|m<Fnx
83 82 eqcomd nZmxdomFn|m<Fnx=Hnm
84 40 43 83 syl2anc φxnZdomFnynZyFnxmy<mnZxdomFn|m<Fnx=Hnm
85 69 84 eleqtrd φxnZdomFnynZyFnxmy<mnZxHnm
86 35 37 85 eliind2 φxnZdomFnynZyFnxmy<mxnZHnm
87 renegcl yy
88 87 archd ymy<m
89 88 ad2antlr φxnZdomFnynZyFnxmy<m
90 25 86 89 reximdd φxnZdomFnynZyFnxmxnZHnm
91 90 rexlimdva2 φxnZdomFnynZyFnxmxnZHnm
92 91 3impia φxnZdomFnynZyFnxmxnZHnm
93 eliun xmnZHnmmxnZHnm
94 92 93 sylibr φxnZdomFnynZyFnxxmnZHnm
95 2 19 94 rabssd φxnZdomFn|ynZyFnxmnZHnm
96 6 95 eqsstrid φDmnZHnm
97 nfcv _mD
98 nfv xm
99 2 98 nfan xφm
100 nfrab1 _xxnZdomFn|ynZyFnx
101 6 100 nfcxfr _xD
102 1 33 nfan nφm
103 nfii1 _nnZHnm
104 103 nfel2 nxnZHnm
105 102 104 nfan nφmxnZHnm
106 simpr φmxnZHnmxnZHnm
107 eliinid xnZHnmnZxHnm
108 107 adantll φmxnZHnmnZxHnm
109 70 adantl φmxnZHnmnZnZ
110 simpllr φmxnZHnmnZm
111 109 110 82 syl2anc φmxnZHnmnZHnm=xdomFn|m<Fnx
112 108 111 eleqtrd φmxnZHnmnZxxdomFn|m<Fnx
113 rabidim1 xxdomFn|m<FnxxdomFn
114 112 113 syl φmxnZHnmnZxdomFn
115 105 106 114 eliind2 φmxnZHnmxnZdomFn
116 45 ad2antlr φmxnZHnmm
117 breq1 y=myFnxmFnx
118 117 ralbidv y=mnZyFnxnZmFnx
119 118 adantl φmxnZHnmy=mnZyFnxnZmFnx
120 110 46 syl φmxnZHnmnZm*
121 simplll φmxnZHnmnZφ
122 121 109 114 56 syl3anc φmxnZHnmnZFnx*
123 rabidim2 xxdomFn|m<Fnxm<Fnx
124 112 123 syl φmxnZHnmnZm<Fnx
125 120 122 124 xrltled φmxnZHnmnZmFnx
126 105 125 ralrimia φmxnZHnmnZmFnx
127 116 119 126 rspcedvd φmxnZHnmynZyFnx
128 115 127 rabidd φmxnZHnmxxnZdomFn|ynZyFnx
129 128 6 eleqtrrdi φmxnZHnmxD
130 99 18 101 129 ssdf2 φmnZHnmD
131 3 97 130 iunssdf φmnZHnmD
132 96 131 eqssd φD=mnZHnm