Metamath Proof Explorer


Theorem fmlasucdisj

Description: The valid Godel formulas of height ( N + 1 ) is disjoint with the difference ( ( Fmlasuc suc N ) \ ( Fmlasuc N ) ) , expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height ( N + 1 ) . (Contributed by AV, 20-Oct-2023)

Ref Expression
Assertion fmlasucdisj NωFmlasucNx|uFmlasucNFmlaNvFmlasucNx=u𝑔viωx=𝑔iuuFmlaNvFmlasucNFmlaNx=u𝑔v=

Proof

Step Hyp Ref Expression
1 vex fV
2 eqeq1 x=fx=u𝑔vf=u𝑔v
3 2 rexbidv x=fvFmlasucNx=u𝑔vvFmlasucNf=u𝑔v
4 eqeq1 x=fx=𝑔iuf=𝑔iu
5 4 rexbidv x=fiωx=𝑔iuiωf=𝑔iu
6 3 5 orbi12d x=fvFmlasucNx=u𝑔viωx=𝑔iuvFmlasucNf=u𝑔viωf=𝑔iu
7 6 rexbidv x=fuFmlasucNFmlaNvFmlasucNx=u𝑔viωx=𝑔iuuFmlasucNFmlaNvFmlasucNf=u𝑔viωf=𝑔iu
8 2 2rexbidv x=fuFmlaNvFmlasucNFmlaNx=u𝑔vuFmlaNvFmlasucNFmlaNf=u𝑔v
9 7 8 orbi12d x=fuFmlasucNFmlaNvFmlasucNx=u𝑔viωx=𝑔iuuFmlaNvFmlasucNFmlaNx=u𝑔vuFmlasucNFmlaNvFmlasucNf=u𝑔viωf=𝑔iuuFmlaNvFmlasucNFmlaNf=u𝑔v
10 1 9 elab fx|uFmlasucNFmlaNvFmlasucNx=u𝑔viωx=𝑔iuuFmlaNvFmlasucNFmlaNx=u𝑔vuFmlasucNFmlaNvFmlasucNf=u𝑔viωf=𝑔iuuFmlaNvFmlasucNFmlaNf=u𝑔v
11 gonar Nωu𝑔vFmlaNuFmlaNvFmlaN
12 elndif uFmlaN¬uFmlasucNFmlaN
13 12 adantr uFmlaNvFmlaN¬uFmlasucNFmlaN
14 13 intnanrd uFmlaNvFmlaN¬uFmlasucNFmlaNvFmlasucN
15 11 14 syl Nωu𝑔vFmlaN¬uFmlasucNFmlaNvFmlasucN
16 15 ex Nωu𝑔vFmlaN¬uFmlasucNFmlaNvFmlasucN
17 16 con2d NωuFmlasucNFmlaNvFmlasucN¬u𝑔vFmlaN
18 17 impl NωuFmlasucNFmlaNvFmlasucN¬u𝑔vFmlaN
19 elneeldif aFmlaNuFmlasucNFmlaNau
20 19 necomd aFmlaNuFmlasucNFmlaNua
21 20 ancoms uFmlasucNFmlaNaFmlaNua
22 21 neneqd uFmlasucNFmlaNaFmlaN¬u=a
23 22 orcd uFmlasucNFmlaNaFmlaN¬u=a¬v=b
24 ianor ¬u=av=b¬u=a¬v=b
25 vex uV
26 vex vV
27 25 26 opth uv=abu=av=b
28 24 27 xchnxbir ¬uv=ab¬u=a¬v=b
29 23 28 sylibr uFmlasucNFmlaNaFmlaN¬uv=ab
30 29 olcd uFmlasucNFmlaNaFmlaN¬1𝑜=1𝑜¬uv=ab
31 ianor ¬1𝑜=1𝑜uv=ab¬1𝑜=1𝑜¬uv=ab
32 gonafv uVvVu𝑔v=1𝑜uv
33 32 el2v u𝑔v=1𝑜uv
34 gonafv aVbVa𝑔b=1𝑜ab
35 34 el2v a𝑔b=1𝑜ab
36 33 35 eqeq12i u𝑔v=a𝑔b1𝑜uv=1𝑜ab
37 1oex 1𝑜V
38 opex uvV
39 37 38 opth 1𝑜uv=1𝑜ab1𝑜=1𝑜uv=ab
40 36 39 bitri u𝑔v=a𝑔b1𝑜=1𝑜uv=ab
41 31 40 xchnxbir ¬u𝑔v=a𝑔b¬1𝑜=1𝑜¬uv=ab
42 30 41 sylibr uFmlasucNFmlaNaFmlaN¬u𝑔v=a𝑔b
43 42 ralrimivw uFmlasucNFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔b
44 43 ralrimiva uFmlasucNFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔b
45 44 adantl NωuFmlasucNFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔b
46 45 adantr NωuFmlasucNFmlaNvFmlasucNaFmlaNbFmlaN¬u𝑔v=a𝑔b
47 gonanegoal u𝑔v𝑔ja
48 47 neii ¬u𝑔v=𝑔ja
49 48 a1i NωuFmlasucNFmlaNvFmlasucN¬u𝑔v=𝑔ja
50 49 ralrimivw NωuFmlasucNFmlaNvFmlasucNjω¬u𝑔v=𝑔ja
51 50 ralrimivw NωuFmlasucNFmlaNvFmlasucNaFmlaNjω¬u𝑔v=𝑔ja
52 r19.26 aFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔jaaFmlaNbFmlaN¬u𝑔v=a𝑔baFmlaNjω¬u𝑔v=𝑔ja
53 46 51 52 sylanbrc NωuFmlasucNFmlaNvFmlasucNaFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔ja
54 18 53 jca NωuFmlasucNFmlaNvFmlasucN¬u𝑔vFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔ja
55 eleq1 f=u𝑔vfFmlaNu𝑔vFmlaN
56 55 notbid f=u𝑔v¬fFmlaN¬u𝑔vFmlaN
57 eqeq1 f=u𝑔vf=a𝑔bu𝑔v=a𝑔b
58 57 notbid f=u𝑔v¬f=a𝑔b¬u𝑔v=a𝑔b
59 58 ralbidv f=u𝑔vbFmlaN¬f=a𝑔bbFmlaN¬u𝑔v=a𝑔b
60 eqeq1 f=u𝑔vf=𝑔jau𝑔v=𝑔ja
61 60 notbid f=u𝑔v¬f=𝑔ja¬u𝑔v=𝑔ja
62 61 ralbidv f=u𝑔vjω¬f=𝑔jajω¬u𝑔v=𝑔ja
63 59 62 anbi12d f=u𝑔vbFmlaN¬f=a𝑔bjω¬f=𝑔jabFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔ja
64 63 ralbidv f=u𝑔vaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔jaaFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔ja
65 56 64 anbi12d f=u𝑔v¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja¬u𝑔vFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔ja
66 54 65 syl5ibrcom NωuFmlasucNFmlaNvFmlasucNf=u𝑔v¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
67 66 rexlimdva NωuFmlasucNFmlaNvFmlasucNf=u𝑔v¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
68 goalr Nω𝑔iuFmlaNuFmlaN
69 68 12 syl Nω𝑔iuFmlaN¬uFmlasucNFmlaN
70 69 ex Nω𝑔iuFmlaN¬uFmlasucNFmlaN
71 70 con2d NωuFmlasucNFmlaN¬𝑔iuFmlaN
72 71 imp NωuFmlasucNFmlaN¬𝑔iuFmlaN
73 72 adantr NωuFmlasucNFmlaNiω¬𝑔iuFmlaN
74 gonanegoal a𝑔b𝑔iu
75 74 nesymi ¬𝑔iu=a𝑔b
76 75 a1i NωuFmlasucNFmlaNiω¬𝑔iu=a𝑔b
77 76 ralrimivw NωuFmlasucNFmlaNiωbFmlaN¬𝑔iu=a𝑔b
78 77 ralrimivw NωuFmlasucNFmlaNiωaFmlaNbFmlaN¬𝑔iu=a𝑔b
79 22 olcd uFmlasucNFmlaNaFmlaN¬i=j¬u=a
80 ianor ¬i=ju=a¬i=j¬u=a
81 vex iV
82 81 25 opth iu=jai=ju=a
83 80 82 xchnxbir ¬iu=ja¬i=j¬u=a
84 79 83 sylibr uFmlasucNFmlaNaFmlaN¬iu=ja
85 84 olcd uFmlasucNFmlaNaFmlaN¬2𝑜=2𝑜¬iu=ja
86 ianor ¬2𝑜=2𝑜iu=ja¬2𝑜=2𝑜¬iu=ja
87 2oex 2𝑜V
88 opex iuV
89 87 88 opth 2𝑜iu=2𝑜ja2𝑜=2𝑜iu=ja
90 86 89 xchnxbir ¬2𝑜iu=2𝑜ja¬2𝑜=2𝑜¬iu=ja
91 df-goal 𝑔iu=2𝑜iu
92 df-goal 𝑔ja=2𝑜ja
93 91 92 eqeq12i 𝑔iu=𝑔ja2𝑜iu=2𝑜ja
94 90 93 xchnxbir ¬𝑔iu=𝑔ja¬2𝑜=2𝑜¬iu=ja
95 85 94 sylibr uFmlasucNFmlaNaFmlaN¬𝑔iu=𝑔ja
96 95 ralrimivw uFmlasucNFmlaNaFmlaNjω¬𝑔iu=𝑔ja
97 96 ralrimiva uFmlasucNFmlaNaFmlaNjω¬𝑔iu=𝑔ja
98 97 adantl NωuFmlasucNFmlaNaFmlaNjω¬𝑔iu=𝑔ja
99 98 adantr NωuFmlasucNFmlaNiωaFmlaNjω¬𝑔iu=𝑔ja
100 r19.26 aFmlaNbFmlaN¬𝑔iu=a𝑔bjω¬𝑔iu=𝑔jaaFmlaNbFmlaN¬𝑔iu=a𝑔baFmlaNjω¬𝑔iu=𝑔ja
101 78 99 100 sylanbrc NωuFmlasucNFmlaNiωaFmlaNbFmlaN¬𝑔iu=a𝑔bjω¬𝑔iu=𝑔ja
102 73 101 jca NωuFmlasucNFmlaNiω¬𝑔iuFmlaNaFmlaNbFmlaN¬𝑔iu=a𝑔bjω¬𝑔iu=𝑔ja
103 eleq1 𝑔iu=f𝑔iuFmlaNfFmlaN
104 103 notbid 𝑔iu=f¬𝑔iuFmlaN¬fFmlaN
105 eqeq1 𝑔iu=f𝑔iu=a𝑔bf=a𝑔b
106 105 notbid 𝑔iu=f¬𝑔iu=a𝑔b¬f=a𝑔b
107 106 ralbidv 𝑔iu=fbFmlaN¬𝑔iu=a𝑔bbFmlaN¬f=a𝑔b
108 eqeq1 𝑔iu=f𝑔iu=𝑔jaf=𝑔ja
109 108 notbid 𝑔iu=f¬𝑔iu=𝑔ja¬f=𝑔ja
110 109 ralbidv 𝑔iu=fjω¬𝑔iu=𝑔jajω¬f=𝑔ja
111 107 110 anbi12d 𝑔iu=fbFmlaN¬𝑔iu=a𝑔bjω¬𝑔iu=𝑔jabFmlaN¬f=a𝑔bjω¬f=𝑔ja
112 111 ralbidv 𝑔iu=faFmlaNbFmlaN¬𝑔iu=a𝑔bjω¬𝑔iu=𝑔jaaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
113 104 112 anbi12d 𝑔iu=f¬𝑔iuFmlaNaFmlaNbFmlaN¬𝑔iu=a𝑔bjω¬𝑔iu=𝑔ja¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
114 113 eqcoms f=𝑔iu¬𝑔iuFmlaNaFmlaNbFmlaN¬𝑔iu=a𝑔bjω¬𝑔iu=𝑔ja¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
115 102 114 syl5ibcom NωuFmlasucNFmlaNiωf=𝑔iu¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
116 115 rexlimdva NωuFmlasucNFmlaNiωf=𝑔iu¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
117 67 116 jaod NωuFmlasucNFmlaNvFmlasucNf=u𝑔viωf=𝑔iu¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
118 117 rexlimdva NωuFmlasucNFmlaNvFmlasucNf=u𝑔viωf=𝑔iu¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
119 elndif vFmlaN¬vFmlasucNFmlaN
120 119 adantl uFmlaNvFmlaN¬vFmlasucNFmlaN
121 120 intnand uFmlaNvFmlaN¬uFmlaNvFmlasucNFmlaN
122 11 121 syl Nωu𝑔vFmlaN¬uFmlaNvFmlasucNFmlaN
123 122 ex Nωu𝑔vFmlaN¬uFmlaNvFmlasucNFmlaN
124 123 con2d NωuFmlaNvFmlasucNFmlaN¬u𝑔vFmlaN
125 124 impl NωuFmlaNvFmlasucNFmlaN¬u𝑔vFmlaN
126 elneeldif bFmlaNvFmlasucNFmlaNbv
127 126 necomd bFmlaNvFmlasucNFmlaNvb
128 127 ancoms vFmlasucNFmlaNbFmlaNvb
129 128 neneqd vFmlasucNFmlaNbFmlaN¬v=b
130 129 olcd vFmlasucNFmlaNbFmlaN¬u=a¬v=b
131 130 28 sylibr vFmlasucNFmlaNbFmlaN¬uv=ab
132 131 intnand vFmlasucNFmlaNbFmlaN¬1𝑜=1𝑜uv=ab
133 132 40 sylnibr vFmlasucNFmlaNbFmlaN¬u𝑔v=a𝑔b
134 133 ralrimiva vFmlasucNFmlaNbFmlaN¬u𝑔v=a𝑔b
135 134 ralrimivw vFmlasucNFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔b
136 135 adantl NωuFmlaNvFmlasucNFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔b
137 48 a1i NωuFmlaNvFmlasucNFmlaN¬u𝑔v=𝑔ja
138 137 ralrimivw NωuFmlaNvFmlasucNFmlaNjω¬u𝑔v=𝑔ja
139 138 ralrimivw NωuFmlaNvFmlasucNFmlaNaFmlaNjω¬u𝑔v=𝑔ja
140 136 139 52 sylanbrc NωuFmlaNvFmlasucNFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔ja
141 125 140 jca NωuFmlaNvFmlasucNFmlaN¬u𝑔vFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔ja
142 eleq1 u𝑔v=fu𝑔vFmlaNfFmlaN
143 142 notbid u𝑔v=f¬u𝑔vFmlaN¬fFmlaN
144 eqeq1 u𝑔v=fu𝑔v=a𝑔bf=a𝑔b
145 144 notbid u𝑔v=f¬u𝑔v=a𝑔b¬f=a𝑔b
146 145 ralbidv u𝑔v=fbFmlaN¬u𝑔v=a𝑔bbFmlaN¬f=a𝑔b
147 eqeq1 u𝑔v=fu𝑔v=𝑔jaf=𝑔ja
148 147 notbid u𝑔v=f¬u𝑔v=𝑔ja¬f=𝑔ja
149 148 ralbidv u𝑔v=fjω¬u𝑔v=𝑔jajω¬f=𝑔ja
150 146 149 anbi12d u𝑔v=fbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔jabFmlaN¬f=a𝑔bjω¬f=𝑔ja
151 150 ralbidv u𝑔v=faFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔jaaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
152 143 151 anbi12d u𝑔v=f¬u𝑔vFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔ja¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
153 152 eqcoms f=u𝑔v¬u𝑔vFmlaNaFmlaNbFmlaN¬u𝑔v=a𝑔bjω¬u𝑔v=𝑔ja¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
154 141 153 syl5ibcom NωuFmlaNvFmlasucNFmlaNf=u𝑔v¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
155 154 rexlimdva NωuFmlaNvFmlasucNFmlaNf=u𝑔v¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
156 155 rexlimdva NωuFmlaNvFmlasucNFmlaNf=u𝑔v¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
157 118 156 jaod NωuFmlasucNFmlaNvFmlasucNf=u𝑔viωf=𝑔iuuFmlaNvFmlasucNFmlaNf=u𝑔v¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
158 isfmlasuc NωfVfFmlasucNfFmlaNaFmlaNbFmlaNf=a𝑔bjωf=𝑔ja
159 158 elvd NωfFmlasucNfFmlaNaFmlaNbFmlaNf=a𝑔bjωf=𝑔ja
160 159 notbid Nω¬fFmlasucN¬fFmlaNaFmlaNbFmlaNf=a𝑔bjωf=𝑔ja
161 ioran ¬fFmlaNaFmlaNbFmlaNf=a𝑔bjωf=𝑔ja¬fFmlaN¬aFmlaNbFmlaNf=a𝑔bjωf=𝑔ja
162 ralnex bFmlaN¬f=a𝑔b¬bFmlaNf=a𝑔b
163 ralnex jω¬f=𝑔ja¬jωf=𝑔ja
164 162 163 anbi12i bFmlaN¬f=a𝑔bjω¬f=𝑔ja¬bFmlaNf=a𝑔b¬jωf=𝑔ja
165 ioran ¬bFmlaNf=a𝑔bjωf=𝑔ja¬bFmlaNf=a𝑔b¬jωf=𝑔ja
166 164 165 bitr4i bFmlaN¬f=a𝑔bjω¬f=𝑔ja¬bFmlaNf=a𝑔bjωf=𝑔ja
167 166 ralbii aFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔jaaFmlaN¬bFmlaNf=a𝑔bjωf=𝑔ja
168 ralnex aFmlaN¬bFmlaNf=a𝑔bjωf=𝑔ja¬aFmlaNbFmlaNf=a𝑔bjωf=𝑔ja
169 167 168 bitr2i ¬aFmlaNbFmlaNf=a𝑔bjωf=𝑔jaaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
170 169 anbi2i ¬fFmlaN¬aFmlaNbFmlaNf=a𝑔bjωf=𝑔ja¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
171 161 170 bitri ¬fFmlaNaFmlaNbFmlaNf=a𝑔bjωf=𝑔ja¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
172 160 171 bitrdi Nω¬fFmlasucN¬fFmlaNaFmlaNbFmlaN¬f=a𝑔bjω¬f=𝑔ja
173 157 172 sylibrd NωuFmlasucNFmlaNvFmlasucNf=u𝑔viωf=𝑔iuuFmlaNvFmlasucNFmlaNf=u𝑔v¬fFmlasucN
174 10 173 biimtrid Nωfx|uFmlasucNFmlaNvFmlasucNx=u𝑔viωx=𝑔iuuFmlaNvFmlasucNFmlaNx=u𝑔v¬fFmlasucN
175 174 ralrimiv Nωfx|uFmlasucNFmlaNvFmlasucNx=u𝑔viωx=𝑔iuuFmlaNvFmlasucNFmlaNx=u𝑔v¬fFmlasucN
176 disjr FmlasucNx|uFmlasucNFmlaNvFmlasucNx=u𝑔viωx=𝑔iuuFmlaNvFmlasucNFmlaNx=u𝑔v=fx|uFmlasucNFmlaNvFmlasucNx=u𝑔viωx=𝑔iuuFmlaNvFmlasucNFmlaNx=u𝑔v¬fFmlasucN
177 175 176 sylibr NωFmlasucNx|uFmlasucNFmlaNvFmlasucNx=u𝑔viωx=𝑔iuuFmlaNvFmlasucNFmlaNx=u𝑔v=