Metamath Proof Explorer


Theorem frxp2

Description: Another way of giving a well-founded order to a Cartesian product of two classes. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses xpord2.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy
frxp2.1 φRFrA
frxp2.2 φSFrB
Assertion frxp2 φTFrA×B

Proof

Step Hyp Ref Expression
1 xpord2.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy
2 frxp2.1 φRFrA
3 frxp2.2 φSFrB
4 dmss sA×BdomsdomA×B
5 4 ad2antrl φsA×BsdomsdomA×B
6 dmxpss domA×BA
7 5 6 sstrdi φsA×BsdomsA
8 simprr φsA×Bss
9 relxp RelA×B
10 relss sA×BRelA×BRels
11 9 10 mpi sA×BRels
12 11 ad2antrl φsA×BsRels
13 reldm0 Relss=doms=
14 12 13 syl φsA×Bss=doms=
15 14 necon3bid φsA×Bssdoms
16 8 15 mpbid φsA×Bsdoms
17 2 adantr φsA×BsRFrA
18 df-fr RFrAccAcacbc¬bRa
19 17 18 sylib φsA×BsccAcacbc¬bRa
20 vex sV
21 20 dmex domsV
22 sseq1 c=domscAdomsA
23 neeq1 c=domscdoms
24 22 23 anbi12d c=domscAcdomsAdoms
25 raleq c=domsbc¬bRabdoms¬bRa
26 25 rexeqbi1dv c=domsacbc¬bRaadomsbdoms¬bRa
27 24 26 imbi12d c=domscAcacbc¬bRadomsAdomsadomsbdoms¬bRa
28 21 27 spcv ccAcacbc¬bRadomsAdomsadomsbdoms¬bRa
29 19 28 syl φsA×BsdomsAdomsadomsbdoms¬bRa
30 7 16 29 mp2and φsA×Bsadomsbdoms¬bRa
31 imassrn sarans
32 rnss sA×BransranA×B
33 32 ad2antrl φsA×BsransranA×B
34 33 adantr φsA×Bsadomsbdoms¬bRaransranA×B
35 rnxpss ranA×BB
36 34 35 sstrdi φsA×Bsadomsbdoms¬bRaransB
37 31 36 sstrid φsA×Bsadomsbdoms¬bRasaB
38 simprl φsA×Bsadomsbdoms¬bRaadoms
39 imadisj sa=domsa=
40 disjsn domsa=¬adoms
41 39 40 bitri sa=¬adoms
42 41 necon2abii adomssa
43 38 42 sylib φsA×Bsadomsbdoms¬bRasa
44 df-fr SFrBeeBecede¬dSc
45 3 44 sylib φeeBecede¬dSc
46 45 ad2antrr φsA×Bsadomsbdoms¬bRaeeBecede¬dSc
47 20 imaex saV
48 sseq1 e=saeBsaB
49 neeq1 e=saesa
50 48 49 anbi12d e=saeBesaBsa
51 raleq e=sade¬dScdsa¬dSc
52 51 rexeqbi1dv e=sacede¬dSccsadsa¬dSc
53 50 52 imbi12d e=saeBecede¬dScsaBsacsadsa¬dSc
54 47 53 spcv eeBecede¬dScsaBsacsadsa¬dSc
55 46 54 syl φsA×Bsadomsbdoms¬bRasaBsacsadsa¬dSc
56 37 43 55 mp2and φsA×Bsadomsbdoms¬bRacsadsa¬dSc
57 simprl φsA×Bsadomsbdoms¬bRacsadsa¬dSccsa
58 vex aV
59 vex cV
60 58 59 elimasn csaacs
61 57 60 sylib φsA×Bsadomsbdoms¬bRacsadsa¬dScacs
62 12 ad2antrr φsA×Bsadomsbdoms¬bRacsadsa¬dScRels
63 elrel Relsqsefq=ef
64 62 63 sylan φsA×Bsadomsbdoms¬bRacsadsa¬dScqsefq=ef
65 breq1 d=fdScfSc
66 65 notbid d=f¬dSc¬fSc
67 simplrr φsA×Bsadomsbdoms¬bRacsadsa¬dScafsdsa¬dSc
68 vex fV
69 58 68 elimasn fsaafs
70 69 biimpri afsfsa
71 70 adantl φsA×Bsadomsbdoms¬bRacsadsa¬dScafsfsa
72 66 67 71 rspcdva φsA×Bsadomsbdoms¬bRacsadsa¬dScafs¬fSc
73 72 intnanrd φsA×Bsadomsbdoms¬bRacsadsa¬dScafs¬fScfc
74 opeq1 e=aef=af
75 74 eleq1d e=aefsafs
76 75 anbi2d e=aφsA×Bsadomsbdoms¬bRacsadsa¬dScefsφsA×Bsadomsbdoms¬bRacsadsa¬dScafs
77 3anass eRae=afScf=ceafceRae=afScf=ceafc
78 olc e=aeRae=a
79 78 biantrurd e=afScf=ceafceRae=afScf=ceafc
80 neeq1 e=aeaaa
81 80 orbi1d e=aeafcaafc
82 neirr ¬aa
83 biorf ¬aafcaafc
84 82 83 ax-mp fcaafc
85 81 84 bitr4di e=aeafcfc
86 85 anbi2d e=afScf=ceafcfScf=cfc
87 andir fScf=cfcfScfcf=cfc
88 nonconne ¬f=cfc
89 88 biorfi fScfcfScfcf=cfc
90 87 89 bitr4i fScf=cfcfScfc
91 86 90 bitrdi e=afScf=ceafcfScfc
92 79 91 bitr3d e=aeRae=afScf=ceafcfScfc
93 77 92 bitrid e=aeRae=afScf=ceafcfScfc
94 93 notbid e=a¬eRae=afScf=ceafc¬fScfc
95 76 94 imbi12d e=aφsA×Bsadomsbdoms¬bRacsadsa¬dScefs¬eRae=afScf=ceafcφsA×Bsadomsbdoms¬bRacsadsa¬dScafs¬fScfc
96 73 95 mpbiri e=aφsA×Bsadomsbdoms¬bRacsadsa¬dScefs¬eRae=afScf=ceafc
97 96 impcom φsA×Bsadomsbdoms¬bRacsadsa¬dScefse=a¬eRae=afScf=ceafc
98 breq1 b=ebRaeRa
99 98 notbid b=e¬bRa¬eRa
100 simplrr φsA×Bsadomsbdoms¬bRacsadsa¬dScbdoms¬bRa
101 100 ad2antrr φsA×Bsadomsbdoms¬bRacsadsa¬dScefseabdoms¬bRa
102 vex eV
103 102 68 opeldm efsedoms
104 103 adantl φsA×Bsadomsbdoms¬bRacsadsa¬dScefsedoms
105 104 adantr φsA×Bsadomsbdoms¬bRacsadsa¬dScefseaedoms
106 99 101 105 rspcdva φsA×Bsadomsbdoms¬bRacsadsa¬dScefsea¬eRa
107 simpr φsA×Bsadomsbdoms¬bRacsadsa¬dScefseaea
108 107 neneqd φsA×Bsadomsbdoms¬bRacsadsa¬dScefsea¬e=a
109 ioran ¬eRae=a¬eRa¬e=a
110 106 108 109 sylanbrc φsA×Bsadomsbdoms¬bRacsadsa¬dScefsea¬eRae=a
111 110 intn3an1d φsA×Bsadomsbdoms¬bRacsadsa¬dScefsea¬eRae=afScf=ceafc
112 97 111 pm2.61dane φsA×Bsadomsbdoms¬bRacsadsa¬dScefs¬eRae=afScf=ceafc
113 112 intn3an3d φsA×Bsadomsbdoms¬bRacsadsa¬dScefs¬eAfBaAcBeRae=afScf=ceafc
114 eleq1 q=efqsefs
115 114 anbi2d q=efφsA×Bsadomsbdoms¬bRacsadsa¬dScqsφsA×Bsadomsbdoms¬bRacsadsa¬dScefs
116 breq1 q=efqTacefTac
117 1 xpord2lem efTaceAfBaAcBeRae=afScf=ceafc
118 116 117 bitrdi q=efqTaceAfBaAcBeRae=afScf=ceafc
119 118 notbid q=ef¬qTac¬eAfBaAcBeRae=afScf=ceafc
120 115 119 imbi12d q=efφsA×Bsadomsbdoms¬bRacsadsa¬dScqs¬qTacφsA×Bsadomsbdoms¬bRacsadsa¬dScefs¬eAfBaAcBeRae=afScf=ceafc
121 113 120 mpbiri q=efφsA×Bsadomsbdoms¬bRacsadsa¬dScqs¬qTac
122 121 com12 φsA×Bsadomsbdoms¬bRacsadsa¬dScqsq=ef¬qTac
123 122 exlimdvv φsA×Bsadomsbdoms¬bRacsadsa¬dScqsefq=ef¬qTac
124 64 123 mpd φsA×Bsadomsbdoms¬bRacsadsa¬dScqs¬qTac
125 124 ralrimiva φsA×Bsadomsbdoms¬bRacsadsa¬dScqs¬qTac
126 breq2 p=acqTpqTac
127 126 notbid p=ac¬qTp¬qTac
128 127 ralbidv p=acqs¬qTpqs¬qTac
129 128 rspcev acsqs¬qTacpsqs¬qTp
130 61 125 129 syl2anc φsA×Bsadomsbdoms¬bRacsadsa¬dScpsqs¬qTp
131 56 130 rexlimddv φsA×Bsadomsbdoms¬bRapsqs¬qTp
132 30 131 rexlimddv φsA×Bspsqs¬qTp
133 132 ex φsA×Bspsqs¬qTp
134 133 alrimiv φssA×Bspsqs¬qTp
135 df-fr TFrA×BssA×Bspsqs¬qTp
136 134 135 sylibr φTFrA×B