Metamath Proof Explorer


Theorem ftc2ditglem

Description: Lemma for ftc2ditg . (Contributed by Mario Carneiro, 3-Sep-2014)

Ref Expression
Hypotheses ftc2ditg.x φX
ftc2ditg.y φY
ftc2ditg.a φAXY
ftc2ditg.b φBXY
ftc2ditg.c φF:XYcn
ftc2ditg.i φDF𝐿1
ftc2ditg.f φF:XYcn
Assertion ftc2ditglem φABABFtdt=FBFA

Proof

Step Hyp Ref Expression
1 ftc2ditg.x φX
2 ftc2ditg.y φY
3 ftc2ditg.a φAXY
4 ftc2ditg.b φBXY
5 ftc2ditg.c φF:XYcn
6 ftc2ditg.i φDF𝐿1
7 ftc2ditg.f φF:XYcn
8 simpr φABAB
9 8 ditgpos φABABFtdt=ABFtdt
10 iccssre XYXY
11 1 2 10 syl2anc φXY
12 11 3 sseldd φA
13 12 adantr φABA
14 11 4 sseldd φB
15 14 adantr φABB
16 ax-resscn
17 16 a1i φAB
18 cncff F:XYcnF:XY
19 7 18 syl φF:XY
20 19 adantr φABF:XY
21 11 adantr φABXY
22 iccssre ABAB
23 12 14 22 syl2anc φAB
24 23 adantr φABAB
25 eqid TopOpenfld=TopOpenfld
26 25 tgioo2 topGenran.=TopOpenfld𝑡
27 25 26 dvres F:XYXYABDFAB=FinttopGenran.AB
28 17 20 21 24 27 syl22anc φABDFAB=FinttopGenran.AB
29 iccntr ABinttopGenran.AB=AB
30 12 14 29 syl2anc φinttopGenran.AB=AB
31 30 adantr φABinttopGenran.AB=AB
32 31 reseq2d φABFinttopGenran.AB=FAB
33 28 32 eqtrd φABDFAB=FAB
34 1 rexrd φX*
35 elicc2 XYAXYAXAAY
36 1 2 35 syl2anc φAXYAXAAY
37 3 36 mpbid φAXAAY
38 37 simp2d φXA
39 iooss1 X*XAABXB
40 34 38 39 syl2anc φABXB
41 2 rexrd φY*
42 elicc2 XYBXYBXBBY
43 1 2 42 syl2anc φBXYBXBBY
44 4 43 mpbid φBXBBY
45 44 simp3d φBY
46 iooss2 Y*BYXBXY
47 41 45 46 syl2anc φXBXY
48 40 47 sstrd φABXY
49 48 adantr φABABXY
50 5 adantr φABF:XYcn
51 rescncf ABXYF:XYcnFAB:ABcn
52 49 50 51 sylc φABFAB:ABcn
53 33 52 eqeltrd φABFAB:ABcn
54 cncff F:XYcnF:XY
55 5 54 syl φF:XY
56 55 feqmptd φDF=tXYFt
57 56 adantr φABDF=tXYFt
58 57 reseq1d φABFAB=tXYFtAB
59 49 resmptd φABtXYFtAB=tABFt
60 58 59 eqtrd φABFAB=tABFt
61 33 60 eqtrd φABDFAB=tABFt
62 ioombl ABdomvol
63 62 a1i φABABdomvol
64 fvexd φABtXYFtV
65 6 adantr φABDF𝐿1
66 57 65 eqeltrrd φABtXYFt𝐿1
67 49 63 64 66 iblss φABtABFt𝐿1
68 61 67 eqeltrd φABDFAB𝐿1
69 iccss2 AXYBXYABXY
70 3 4 69 syl2anc φABXY
71 rescncf ABXYF:XYcnFAB:ABcn
72 70 7 71 sylc φFAB:ABcn
73 72 adantr φABFAB:ABcn
74 13 15 8 53 68 73 ftc2 φABABFABtdt=FABBFABA
75 33 fveq1d φABFABt=FABt
76 fvres tABFABt=Ft
77 75 76 sylan9eq φABtABFABt=Ft
78 77 itgeq2dv φABABFABtdt=ABFtdt
79 13 rexrd φABA*
80 15 rexrd φABB*
81 ubicc2 A*B*ABBAB
82 lbicc2 A*B*ABAAB
83 fvres BABFABB=FB
84 fvres AABFABA=FA
85 83 84 oveqan12d BABAABFABBFABA=FBFA
86 81 82 85 syl2anc A*B*ABFABBFABA=FBFA
87 79 80 8 86 syl3anc φABFABBFABA=FBFA
88 74 78 87 3eqtr3d φABABFtdt=FBFA
89 9 88 eqtrd φABABFtdt=FBFA