Metamath Proof Explorer


Theorem ghmquskerlem1

Description: Lemma for ghmqusker (Contributed by Thierry Arnoux, 14-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1 0˙=0H
ghmqusker.f φFGGrpHomH
ghmqusker.k K=F-10˙
ghmqusker.q Q=G/𝑠G~QGK
ghmqusker.j J=qBaseQFq
ghmquskerlem1.x φXBaseG
Assertion ghmquskerlem1 φJXG~QGK=FX

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0˙=0H
2 ghmqusker.f φFGGrpHomH
3 ghmqusker.k K=F-10˙
4 ghmqusker.q Q=G/𝑠G~QGK
5 ghmqusker.j J=qBaseQFq
6 ghmquskerlem1.x φXBaseG
7 imaeq2 q=XG~QGKFq=FXG~QGK
8 7 unieqd q=XG~QGKFq=FXG~QGK
9 ovex G~QGKV
10 9 ecelqsi XBaseGXG~QGKBaseG/G~QGK
11 6 10 syl φXG~QGKBaseG/G~QGK
12 4 a1i φQ=G/𝑠G~QGK
13 eqidd φBaseG=BaseG
14 ovexd φG~QGKV
15 ghmgrp1 FGGrpHomHGGrp
16 2 15 syl φGGrp
17 12 13 14 16 qusbas φBaseG/G~QGK=BaseQ
18 11 17 eleqtrd φXG~QGKBaseQ
19 2 imaexd φFXG~QGKV
20 19 uniexd φFXG~QGKV
21 5 8 18 20 fvmptd3 φJXG~QGK=FXG~QGK
22 eqid BaseG=BaseG
23 eqid BaseH=BaseH
24 22 23 ghmf FGGrpHomHF:BaseGBaseH
25 2 24 syl φF:BaseGBaseH
26 25 ffnd φFFnBaseG
27 1 ghmker FGGrpHomHF-10˙NrmSGrpG
28 2 27 syl φF-10˙NrmSGrpG
29 3 28 eqeltrid φKNrmSGrpG
30 nsgsubg KNrmSGrpGKSubGrpG
31 eqid G~QGK=G~QGK
32 22 31 eqger KSubGrpGG~QGKErBaseG
33 29 30 32 3syl φG~QGKErBaseG
34 33 ecss φXG~QGKBaseG
35 26 34 fvelimabd φyFXG~QGKzXG~QGKFz=y
36 simpr φzXG~QGKFz=yFz=y
37 2 adantr φzXG~QGKFGGrpHomH
38 eqid invgG=invgG
39 37 15 syl φzXG~QGKGGrp
40 6 adantr φzXG~QGKXBaseG
41 22 38 39 40 grpinvcld φzXG~QGKinvgGXBaseG
42 34 sselda φzXG~QGKzBaseG
43 eqid +G=+G
44 eqid +H=+H
45 22 43 44 ghmlin FGGrpHomHinvgGXBaseGzBaseGFinvgGX+Gz=FinvgGX+HFz
46 37 41 42 45 syl3anc φzXG~QGKFinvgGX+Gz=FinvgGX+HFz
47 26 adantr φzXG~QGKFFnBaseG
48 22 subgss KSubGrpGKBaseG
49 29 30 48 3syl φKBaseG
50 49 adantr φzXG~QGKKBaseG
51 vex zV
52 elecg zVXBaseGzXG~QGKXG~QGKz
53 51 52 mpan XBaseGzXG~QGKXG~QGKz
54 53 biimpa XBaseGzXG~QGKXG~QGKz
55 6 54 sylan φzXG~QGKXG~QGKz
56 22 38 43 31 eqgval GGrpKBaseGXG~QGKzXBaseGzBaseGinvgGX+GzK
57 56 biimpa GGrpKBaseGXG~QGKzXBaseGzBaseGinvgGX+GzK
58 57 simp3d GGrpKBaseGXG~QGKzinvgGX+GzK
59 39 50 55 58 syl21anc φzXG~QGKinvgGX+GzK
60 59 3 eleqtrdi φzXG~QGKinvgGX+GzF-10˙
61 fniniseg FFnBaseGinvgGX+GzF-10˙invgGX+GzBaseGFinvgGX+Gz=0˙
62 61 biimpa FFnBaseGinvgGX+GzF-10˙invgGX+GzBaseGFinvgGX+Gz=0˙
63 47 60 62 syl2anc φzXG~QGKinvgGX+GzBaseGFinvgGX+Gz=0˙
64 63 simprd φzXG~QGKFinvgGX+Gz=0˙
65 46 64 eqtr3d φzXG~QGKFinvgGX+HFz=0˙
66 65 oveq2d φzXG~QGKFX+HFinvgGX+HFz=FX+H0˙
67 eqid invgH=invgH
68 22 38 67 ghminv FGGrpHomHXBaseGFinvgGX=invgHFX
69 37 40 68 syl2anc φzXG~QGKFinvgGX=invgHFX
70 69 oveq1d φzXG~QGKFinvgGX+HFz=invgHFX+HFz
71 70 oveq2d φzXG~QGKFX+HFinvgGX+HFz=FX+HinvgHFX+HFz
72 ghmgrp2 FGGrpHomHHGrp
73 37 72 syl φzXG~QGKHGrp
74 37 24 syl φzXG~QGKF:BaseGBaseH
75 74 40 ffvelcdmd φzXG~QGKFXBaseH
76 74 42 ffvelcdmd φzXG~QGKFzBaseH
77 23 44 67 grpasscan1 HGrpFXBaseHFzBaseHFX+HinvgHFX+HFz=Fz
78 73 75 76 77 syl3anc φzXG~QGKFX+HinvgHFX+HFz=Fz
79 71 78 eqtrd φzXG~QGKFX+HFinvgGX+HFz=Fz
80 23 44 1 grprid HGrpFXBaseHFX+H0˙=FX
81 73 75 80 syl2anc φzXG~QGKFX+H0˙=FX
82 66 79 81 3eqtr3d φzXG~QGKFz=FX
83 82 adantr φzXG~QGKFz=yFz=FX
84 36 83 eqtr3d φzXG~QGKFz=yy=FX
85 84 r19.29an φzXG~QGKFz=yy=FX
86 ecref G~QGKErBaseGXBaseGXXG~QGK
87 33 6 86 syl2anc φXXG~QGK
88 87 adantr φy=FXXXG~QGK
89 fveqeq2 z=XFz=yFX=y
90 89 adantl φy=FXz=XFz=yFX=y
91 simpr φy=FXy=FX
92 91 eqcomd φy=FXFX=y
93 88 90 92 rspcedvd φy=FXzXG~QGKFz=y
94 85 93 impbida φzXG~QGKFz=yy=FX
95 velsn yFXy=FX
96 94 95 bitr4di φzXG~QGKFz=yyFX
97 35 96 bitrd φyFXG~QGKyFX
98 97 eqrdv φFXG~QGK=FX
99 98 unieqd φFXG~QGK=FX
100 fvex FXV
101 100 unisn FX=FX
102 99 101 eqtrdi φFXG~QGK=FX
103 21 102 eqtrd φJXG~QGK=FX