| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusker.1 |  | 
						
							| 2 |  | ghmqusker.f |  | 
						
							| 3 |  | ghmqusker.k |  | 
						
							| 4 |  | ghmqusker.q |  | 
						
							| 5 |  | ghmqusker.j |  | 
						
							| 6 |  | ghmquskerlem1.x |  | 
						
							| 7 |  | imaeq2 |  | 
						
							| 8 | 7 | unieqd |  | 
						
							| 9 |  | ovex |  | 
						
							| 10 | 9 | ecelqsi |  | 
						
							| 11 | 6 10 | syl |  | 
						
							| 12 | 4 | a1i |  | 
						
							| 13 |  | eqidd |  | 
						
							| 14 |  | ovexd |  | 
						
							| 15 |  | ghmgrp1 |  | 
						
							| 16 | 2 15 | syl |  | 
						
							| 17 | 12 13 14 16 | qusbas |  | 
						
							| 18 | 11 17 | eleqtrd |  | 
						
							| 19 | 2 | imaexd |  | 
						
							| 20 | 19 | uniexd |  | 
						
							| 21 | 5 8 18 20 | fvmptd3 |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 22 23 | ghmf |  | 
						
							| 25 | 2 24 | syl |  | 
						
							| 26 | 25 | ffnd |  | 
						
							| 27 | 1 | ghmker |  | 
						
							| 28 | 2 27 | syl |  | 
						
							| 29 | 3 28 | eqeltrid |  | 
						
							| 30 |  | nsgsubg |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 22 31 | eqger |  | 
						
							| 33 | 29 30 32 | 3syl |  | 
						
							| 34 | 33 | ecss |  | 
						
							| 35 | 26 34 | fvelimabd |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 | 2 | adantr |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 37 15 | syl |  | 
						
							| 40 | 6 | adantr |  | 
						
							| 41 | 22 38 39 40 | grpinvcld |  | 
						
							| 42 | 34 | sselda |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 22 43 44 | ghmlin |  | 
						
							| 46 | 37 41 42 45 | syl3anc |  | 
						
							| 47 | 26 | adantr |  | 
						
							| 48 | 22 | subgss |  | 
						
							| 49 | 29 30 48 | 3syl |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 |  | vex |  | 
						
							| 52 |  | elecg |  | 
						
							| 53 | 51 52 | mpan |  | 
						
							| 54 | 53 | biimpa |  | 
						
							| 55 | 6 54 | sylan |  | 
						
							| 56 | 22 38 43 31 | eqgval |  | 
						
							| 57 | 56 | biimpa |  | 
						
							| 58 | 57 | simp3d |  | 
						
							| 59 | 39 50 55 58 | syl21anc |  | 
						
							| 60 | 59 3 | eleqtrdi |  | 
						
							| 61 |  | fniniseg |  | 
						
							| 62 | 61 | biimpa |  | 
						
							| 63 | 47 60 62 | syl2anc |  | 
						
							| 64 | 63 | simprd |  | 
						
							| 65 | 46 64 | eqtr3d |  | 
						
							| 66 | 65 | oveq2d |  | 
						
							| 67 |  | eqid |  | 
						
							| 68 | 22 38 67 | ghminv |  | 
						
							| 69 | 37 40 68 | syl2anc |  | 
						
							| 70 | 69 | oveq1d |  | 
						
							| 71 | 70 | oveq2d |  | 
						
							| 72 |  | ghmgrp2 |  | 
						
							| 73 | 37 72 | syl |  | 
						
							| 74 | 37 24 | syl |  | 
						
							| 75 | 74 40 | ffvelcdmd |  | 
						
							| 76 | 74 42 | ffvelcdmd |  | 
						
							| 77 | 23 44 67 | grpasscan1 |  | 
						
							| 78 | 73 75 76 77 | syl3anc |  | 
						
							| 79 | 71 78 | eqtrd |  | 
						
							| 80 | 23 44 1 | grprid |  | 
						
							| 81 | 73 75 80 | syl2anc |  | 
						
							| 82 | 66 79 81 | 3eqtr3d |  | 
						
							| 83 | 82 | adantr |  | 
						
							| 84 | 36 83 | eqtr3d |  | 
						
							| 85 | 84 | r19.29an |  | 
						
							| 86 |  | ecref |  | 
						
							| 87 | 33 6 86 | syl2anc |  | 
						
							| 88 | 87 | adantr |  | 
						
							| 89 |  | fveqeq2 |  | 
						
							| 90 | 89 | adantl |  | 
						
							| 91 |  | simpr |  | 
						
							| 92 | 91 | eqcomd |  | 
						
							| 93 | 88 90 92 | rspcedvd |  | 
						
							| 94 | 85 93 | impbida |  | 
						
							| 95 |  | velsn |  | 
						
							| 96 | 94 95 | bitr4di |  | 
						
							| 97 | 35 96 | bitrd |  | 
						
							| 98 | 97 | eqrdv |  | 
						
							| 99 | 98 | unieqd |  | 
						
							| 100 |  | fvex |  | 
						
							| 101 | 100 | unisn |  | 
						
							| 102 | 99 101 | eqtrdi |  | 
						
							| 103 | 21 102 | eqtrd |  |