Metamath Proof Explorer


Theorem hdmap1l6lem1

Description: Lemma for hdmap1l6 . Part (6) in Baer p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6e.y φYV0˙
hdmap1l6e.z φZV0˙
hdmap1l6e.xn φ¬XNYZ
hdmap1l6.yz φNYNZ
hdmap1l6.fg φIXFY=G
hdmap1l6.fe φIXFZ=E
Assertion hdmap1l6lem1 φMNX-˙Y+˙Z=LFRG˙E

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6e.y φYV0˙
21 hdmap1l6e.z φZV0˙
22 hdmap1l6e.xn φ¬XNYZ
23 hdmap1l6.yz φNYNZ
24 hdmap1l6.fg φIXFY=G
25 hdmap1l6.fe φIXFZ=E
26 eqid LSubSpU=LSubSpU
27 1 2 16 dvhlmod φULMod
28 18 eldifad φXV
29 20 eldifad φYV
30 3 5 lmodvsubcl ULModXVYVX-˙YV
31 27 28 29 30 syl3anc φX-˙YV
32 3 26 7 lspsncl ULModX-˙YVNX-˙YLSubSpU
33 27 31 32 syl2anc φNX-˙YLSubSpU
34 21 eldifad φZV
35 3 26 7 lspsncl ULModZVNZLSubSpU
36 27 34 35 syl2anc φNZLSubSpU
37 eqid LSSumU=LSSumU
38 26 37 lsmcl ULModNX-˙YLSubSpUNZLSubSpUNX-˙YLSSumUNZLSubSpU
39 27 33 36 38 syl3anc φNX-˙YLSSumUNZLSubSpU
40 3 5 lmodvsubcl ULModXVZVX-˙ZV
41 27 28 34 40 syl3anc φX-˙ZV
42 3 26 7 lspsncl ULModX-˙ZVNX-˙ZLSubSpU
43 27 41 42 syl2anc φNX-˙ZLSubSpU
44 3 26 7 lspsncl ULModYVNYLSubSpU
45 27 29 44 syl2anc φNYLSubSpU
46 26 37 lsmcl ULModNX-˙ZLSubSpUNYLSubSpUNX-˙ZLSSumUNYLSubSpU
47 27 43 45 46 syl3anc φNX-˙ZLSSumUNYLSubSpU
48 1 14 2 26 16 39 47 mapdin φMNX-˙YLSSumUNZNX-˙ZLSSumUNY=MNX-˙YLSSumUNZMNX-˙ZLSSumUNY
49 eqid LSSumC=LSSumC
50 1 14 2 26 37 8 49 16 33 36 mapdlsm φMNX-˙YLSSumUNZ=MNX-˙YLSSumCMNZ
51 1 14 2 26 37 8 49 16 43 45 mapdlsm φMNX-˙ZLSSumUNY=MNX-˙ZLSSumCMNY
52 50 51 ineq12d φMNX-˙YLSSumUNZMNX-˙ZLSSumUNY=MNX-˙YLSSumCMNZMNX-˙ZLSSumCMNY
53 1 2 16 dvhlvec φULVec
54 3 6 7 53 29 21 28 23 22 lspindp2 φNXNY¬ZNXY
55 54 simpld φNXNY
56 1 2 3 6 7 8 9 13 14 15 16 17 19 55 18 29 hdmap1cl φIXFYD
57 24 56 eqeltrrd φGD
58 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 20 57 55 19 hdmap1eq φIXFY=GMNY=LGMNX-˙Y=LFRG
59 24 58 mpbid φMNY=LGMNX-˙Y=LFRG
60 59 simprd φMNX-˙Y=LFRG
61 3 6 7 53 20 34 28 23 22 lspindp1 φNXNZ¬YNXZ
62 61 simpld φNXNZ
63 1 2 3 6 7 8 9 13 14 15 16 17 19 62 18 34 hdmap1cl φIXFZD
64 25 63 eqeltrrd φED
65 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 21 64 62 19 hdmap1eq φIXFZ=EMNZ=LEMNX-˙Z=LFRE
66 25 65 mpbid φMNZ=LEMNX-˙Z=LFRE
67 66 simpld φMNZ=LE
68 60 67 oveq12d φMNX-˙YLSSumCMNZ=LFRGLSSumCLE
69 66 simprd φMNX-˙Z=LFRE
70 59 simpld φMNY=LG
71 69 70 oveq12d φMNX-˙ZLSSumCMNY=LFRELSSumCLG
72 68 71 ineq12d φMNX-˙YLSSumCMNZMNX-˙ZLSSumCMNY=LFRGLSSumCLELFRELSSumCLG
73 52 72 eqtrd φMNX-˙YLSSumUNZMNX-˙ZLSSumUNY=LFRGLSSumCLELFRELSSumCLG
74 48 73 eqtrd φMNX-˙YLSSumUNZNX-˙ZLSSumUNY=LFRGLSSumCLELFRELSSumCLG
75 3 5 6 37 7 53 28 22 23 20 21 4 baerlem5a φNX-˙Y+˙Z=NX-˙YLSSumUNZNX-˙ZLSSumUNY
76 75 fveq2d φMNX-˙Y+˙Z=MNX-˙YLSSumUNZNX-˙ZLSSumUNY
77 1 8 16 lcdlvec φCLVec
78 1 14 2 3 7 8 9 13 16 17 19 28 29 57 70 34 64 67 22 mapdindp φ¬FLGE
79 1 14 2 3 7 8 9 13 16 57 70 29 34 64 67 23 mapdncol φLGLE
80 1 14 2 3 7 8 9 13 16 57 70 6 12 20 mapdn0 φGDQ
81 1 14 2 3 7 8 9 13 16 64 67 6 12 21 mapdn0 φEDQ
82 9 11 12 49 13 77 17 78 79 80 81 10 baerlem5a φLFRG˙E=LFRGLSSumCLELFRELSSumCLG
83 74 76 82 3eqtr4d φMNX-˙Y+˙Z=LFRG˙E