Metamath Proof Explorer


Theorem hdmapval3lemN

Description: Value of map from vectors to functionals at arguments not colinear with the reference vector E . (Contributed by NM, 17-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapval3.h H=LHypK
hdmapval3.e E=IBaseKILTrnKW
hdmapval3.u U=DVecHKW
hdmapval3.v V=BaseU
hdmapval3.n N=LSpanU
hdmapval3.c C=LCDualKW
hdmapval3.d D=BaseC
hdmapval3.j J=HVMapKW
hdmapval3.i I=HDMap1KW
hdmapval3.s S=HDMapKW
hdmapval3.k φKHLWH
hdmapval3.te φNTNE
hdmapval3lem.t φTV0U
hdmapval3lem.x φxV
hdmapval3lem.xn φ¬xNET
Assertion hdmapval3lemN φST=IEJET

Proof

Step Hyp Ref Expression
1 hdmapval3.h H=LHypK
2 hdmapval3.e E=IBaseKILTrnKW
3 hdmapval3.u U=DVecHKW
4 hdmapval3.v V=BaseU
5 hdmapval3.n N=LSpanU
6 hdmapval3.c C=LCDualKW
7 hdmapval3.d D=BaseC
8 hdmapval3.j J=HVMapKW
9 hdmapval3.i I=HDMap1KW
10 hdmapval3.s S=HDMapKW
11 hdmapval3.k φKHLWH
12 hdmapval3.te φNTNE
13 hdmapval3lem.t φTV0U
14 hdmapval3lem.x φxV
15 hdmapval3lem.xn φ¬xNET
16 eqid 0U=0U
17 eqid LSpanC=LSpanC
18 eqid mapdKW=mapdKW
19 eqid 0C=0C
20 eqid BaseK=BaseK
21 eqid LTrnKW=LTrnKW
22 1 20 21 3 4 16 2 11 dvheveccl φEV0U
23 1 3 4 16 6 7 19 8 11 22 hvmapcl2 φJED0C
24 23 eldifad φJED
25 1 3 4 16 5 6 17 18 8 11 22 mapdhvmap φmapdKWNE=LSpanCJE
26 1 3 11 dvhlvec φULVec
27 22 eldifad φEV
28 13 eldifad φTV
29 4 5 26 14 27 28 15 lspindpi φNxNENxNT
30 29 simpld φNxNE
31 30 necomd φNENx
32 1 3 4 16 5 6 7 17 18 9 11 24 25 31 22 14 hdmap1cl φIEJExD
33 eqidd φIEJEx=IEJEx
34 eqid -U=-U
35 eqid -C=-C
36 eqid LSubSpU=LSubSpU
37 1 3 11 dvhlmod φULMod
38 4 36 5 37 27 28 lspprcl φNETLSubSpU
39 16 36 37 38 14 15 lssneln0 φxV0U
40 1 3 4 34 16 5 6 7 35 17 18 9 11 22 24 39 32 31 25 hdmap1eq φIEJEx=IEJExmapdKWNx=LSpanCIEJExmapdKWNE-Ux=LSpanCJE-CIEJEx
41 33 40 mpbid φmapdKWNx=LSpanCIEJExmapdKWNE-Ux=LSpanCJE-CIEJEx
42 41 simpld φmapdKWNx=LSpanCIEJEx
43 12 necomd φNENT
44 4 5 37 27 28 lspprid1 φENET
45 36 5 37 38 44 lspsnel5a φNENET
46 45 45 unssd φNENENET
47 46 15 ssneldd φ¬xNENE
48 1 2 3 4 5 6 7 8 9 10 11 27 14 47 hdmapval2 φSE=IxIEJExE
49 1 2 8 10 11 hdmapevec φSE=JE
50 48 49 eqtr3d φIxIEJExE=JE
51 4 5 37 27 28 lspprid2 φTNET
52 36 5 37 38 51 lspsnel5a φNTNET
53 45 52 unssd φNENTNET
54 53 15 ssneldd φ¬xNENT
55 1 2 3 4 5 6 7 8 9 10 11 28 14 54 hdmapval2 φST=IxIEJExT
56 55 eqcomd φIxIEJExT=ST
57 1 3 4 16 5 6 7 17 18 9 11 32 42 39 22 13 43 15 50 56 hdmap1eq4N φIEJET=ST
58 57 eqcomd φST=IEJET