Metamath Proof Explorer


Theorem hdmapval3lemN

Description: Value of map from vectors to functionals at arguments not colinear with the reference vector E . (Contributed by NM, 17-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapval3.h H = LHyp K
hdmapval3.e E = I Base K I LTrn K W
hdmapval3.u U = DVecH K W
hdmapval3.v V = Base U
hdmapval3.n N = LSpan U
hdmapval3.c C = LCDual K W
hdmapval3.d D = Base C
hdmapval3.j J = HVMap K W
hdmapval3.i I = HDMap1 K W
hdmapval3.s S = HDMap K W
hdmapval3.k φ K HL W H
hdmapval3.te φ N T N E
hdmapval3lem.t φ T V 0 U
hdmapval3lem.x φ x V
hdmapval3lem.xn φ ¬ x N E T
Assertion hdmapval3lemN φ S T = I E J E T

Proof

Step Hyp Ref Expression
1 hdmapval3.h H = LHyp K
2 hdmapval3.e E = I Base K I LTrn K W
3 hdmapval3.u U = DVecH K W
4 hdmapval3.v V = Base U
5 hdmapval3.n N = LSpan U
6 hdmapval3.c C = LCDual K W
7 hdmapval3.d D = Base C
8 hdmapval3.j J = HVMap K W
9 hdmapval3.i I = HDMap1 K W
10 hdmapval3.s S = HDMap K W
11 hdmapval3.k φ K HL W H
12 hdmapval3.te φ N T N E
13 hdmapval3lem.t φ T V 0 U
14 hdmapval3lem.x φ x V
15 hdmapval3lem.xn φ ¬ x N E T
16 eqid 0 U = 0 U
17 eqid LSpan C = LSpan C
18 eqid mapd K W = mapd K W
19 eqid 0 C = 0 C
20 eqid Base K = Base K
21 eqid LTrn K W = LTrn K W
22 1 20 21 3 4 16 2 11 dvheveccl φ E V 0 U
23 1 3 4 16 6 7 19 8 11 22 hvmapcl2 φ J E D 0 C
24 23 eldifad φ J E D
25 1 3 4 16 5 6 17 18 8 11 22 mapdhvmap φ mapd K W N E = LSpan C J E
26 1 3 11 dvhlvec φ U LVec
27 22 eldifad φ E V
28 13 eldifad φ T V
29 4 5 26 14 27 28 15 lspindpi φ N x N E N x N T
30 29 simpld φ N x N E
31 30 necomd φ N E N x
32 1 3 4 16 5 6 7 17 18 9 11 24 25 31 22 14 hdmap1cl φ I E J E x D
33 eqidd φ I E J E x = I E J E x
34 eqid - U = - U
35 eqid - C = - C
36 eqid LSubSp U = LSubSp U
37 1 3 11 dvhlmod φ U LMod
38 4 36 5 37 27 28 lspprcl φ N E T LSubSp U
39 16 36 37 38 14 15 lssneln0 φ x V 0 U
40 1 3 4 34 16 5 6 7 35 17 18 9 11 22 24 39 32 31 25 hdmap1eq φ I E J E x = I E J E x mapd K W N x = LSpan C I E J E x mapd K W N E - U x = LSpan C J E - C I E J E x
41 33 40 mpbid φ mapd K W N x = LSpan C I E J E x mapd K W N E - U x = LSpan C J E - C I E J E x
42 41 simpld φ mapd K W N x = LSpan C I E J E x
43 12 necomd φ N E N T
44 4 5 37 27 28 lspprid1 φ E N E T
45 36 5 37 38 44 lspsnel5a φ N E N E T
46 45 45 unssd φ N E N E N E T
47 46 15 ssneldd φ ¬ x N E N E
48 1 2 3 4 5 6 7 8 9 10 11 27 14 47 hdmapval2 φ S E = I x I E J E x E
49 1 2 8 10 11 hdmapevec φ S E = J E
50 48 49 eqtr3d φ I x I E J E x E = J E
51 4 5 37 27 28 lspprid2 φ T N E T
52 36 5 37 38 51 lspsnel5a φ N T N E T
53 45 52 unssd φ N E N T N E T
54 53 15 ssneldd φ ¬ x N E N T
55 1 2 3 4 5 6 7 8 9 10 11 28 14 54 hdmapval2 φ S T = I x I E J E x T
56 55 eqcomd φ I x I E J E x T = S T
57 1 3 4 16 5 6 7 17 18 9 11 32 42 39 22 13 43 15 50 56 hdmap1eq4N φ I E J E T = S T
58 57 eqcomd φ S T = I E J E T