Metamath Proof Explorer


Theorem icoopnst

Description: A half-open interval starting at A is open in the closed interval from A to B . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypothesis icoopnst.1 J=MetOpenabsAB×AB
Assertion icoopnst ABCABACJ

Proof

Step Hyp Ref Expression
1 icoopnst.1 J=MetOpenabsAB×AB
2 iooretop A1CtopGenran.
3 simp1 vAvv<Cv
4 3 a1i ABCABvAvv<Cv
5 ltm1 AA1<A
6 5 adantr AvA1<A
7 peano2rem AA1
8 7 adantr AvA1
9 ltletr A1AvA1<AAvA1<v
10 9 3expb A1AvA1<AAvA1<v
11 8 10 mpancom AvA1<AAvA1<v
12 6 11 mpand AvAvA1<v
13 12 impr AvAvA1<v
14 13 3adantr3 AvAvv<CA1<v
15 14 ex AvAvv<CA1<v
16 15 ad2antrr ABCABvAvv<CA1<v
17 simp3 vAvv<Cv<C
18 17 a1i ABCABvAvv<Cv<C
19 4 16 18 3jcad ABCABvAvv<CvA1<vv<C
20 simp2 vAvv<CAv
21 20 a1i ABCABvAvv<CAv
22 rexr AA*
23 elioc2 A*BCABCA<CCB
24 22 23 sylan ABCABCA<CCB
25 24 biimpa ABCABCA<CCB
26 ltleletr vCBv<CCBvB
27 26 3expa vCBv<CCBvB
28 27 an31s BCvv<CCBvB
29 28 imp BCvv<CCBvB
30 29 ancom2s BCvCBv<CvB
31 30 an4s BCCBvv<CvB
32 31 3adantr2 BCCBvAvv<CvB
33 32 ex BCCBvAvv<CvB
34 33 anasss BCCBvAvv<CvB
35 34 3adantr2 BCA<CCBvAvv<CvB
36 35 adantll ABCA<CCBvAvv<CvB
37 25 36 syldan ABCABvAvv<CvB
38 4 21 37 3jcad ABCABvAvv<CvAvvB
39 19 38 jcad ABCABvAvv<CvA1<vv<CvAvvB
40 simpl1 vA1<vv<CvAvvBv
41 simpr2 vA1<vv<CvAvvBAv
42 simpl3 vA1<vv<CvAvvBv<C
43 40 41 42 3jca vA1<vv<CvAvvBvAvv<C
44 39 43 impbid1 ABCABvAvv<CvA1<vv<CvAvvB
45 simpll ABCABA
46 25 simp1d ABCABC
47 46 rexrd ABCABC*
48 elico2 AC*vACvAvv<C
49 45 47 48 syl2anc ABCABvACvAvv<C
50 elin vA1CABvA1CvAB
51 7 rexrd AA1*
52 51 ad2antrr ABCABA1*
53 elioo2 A1*C*vA1CvA1<vv<C
54 52 47 53 syl2anc ABCABvA1CvA1<vv<C
55 elicc2 ABvABvAvvB
56 55 adantr ABCABvABvAvvB
57 54 56 anbi12d ABCABvA1CvABvA1<vv<CvAvvB
58 50 57 bitrid ABCABvA1CABvA1<vv<CvAvvB
59 44 49 58 3bitr4d ABCABvACvA1CAB
60 59 eqrdv ABCABAC=A1CAB
61 ineq1 v=A1CvAB=A1CAB
62 61 rspceeqv A1CtopGenran.AC=A1CABvtopGenran.AC=vAB
63 2 60 62 sylancr ABCABvtopGenran.AC=vAB
64 retop topGenran.Top
65 ovex ABV
66 elrest topGenran.TopABVACtopGenran.𝑡ABvtopGenran.AC=vAB
67 64 65 66 mp2an ACtopGenran.𝑡ABvtopGenran.AC=vAB
68 63 67 sylibr ABCABACtopGenran.𝑡AB
69 iccssre ABAB
70 69 adantr ABCABAB
71 eqid topGenran.=topGenran.
72 71 1 resubmet ABJ=topGenran.𝑡AB
73 70 72 syl ABCABJ=topGenran.𝑡AB
74 68 73 eleqtrrd ABCABACJ
75 74 ex ABCABACJ