Description: A half-open interval starting at A is open in the closed interval from A to B . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | icoopnst.1 | |
|
Assertion | icoopnst | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoopnst.1 | |
|
2 | iooretop | |
|
3 | simp1 | |
|
4 | 3 | a1i | |
5 | ltm1 | |
|
6 | 5 | adantr | |
7 | peano2rem | |
|
8 | 7 | adantr | |
9 | ltletr | |
|
10 | 9 | 3expb | |
11 | 8 10 | mpancom | |
12 | 6 11 | mpand | |
13 | 12 | impr | |
14 | 13 | 3adantr3 | |
15 | 14 | ex | |
16 | 15 | ad2antrr | |
17 | simp3 | |
|
18 | 17 | a1i | |
19 | 4 16 18 | 3jcad | |
20 | simp2 | |
|
21 | 20 | a1i | |
22 | rexr | |
|
23 | elioc2 | |
|
24 | 22 23 | sylan | |
25 | 24 | biimpa | |
26 | ltleletr | |
|
27 | 26 | 3expa | |
28 | 27 | an31s | |
29 | 28 | imp | |
30 | 29 | ancom2s | |
31 | 30 | an4s | |
32 | 31 | 3adantr2 | |
33 | 32 | ex | |
34 | 33 | anasss | |
35 | 34 | 3adantr2 | |
36 | 35 | adantll | |
37 | 25 36 | syldan | |
38 | 4 21 37 | 3jcad | |
39 | 19 38 | jcad | |
40 | simpl1 | |
|
41 | simpr2 | |
|
42 | simpl3 | |
|
43 | 40 41 42 | 3jca | |
44 | 39 43 | impbid1 | |
45 | simpll | |
|
46 | 25 | simp1d | |
47 | 46 | rexrd | |
48 | elico2 | |
|
49 | 45 47 48 | syl2anc | |
50 | elin | |
|
51 | 7 | rexrd | |
52 | 51 | ad2antrr | |
53 | elioo2 | |
|
54 | 52 47 53 | syl2anc | |
55 | elicc2 | |
|
56 | 55 | adantr | |
57 | 54 56 | anbi12d | |
58 | 50 57 | bitrid | |
59 | 44 49 58 | 3bitr4d | |
60 | 59 | eqrdv | |
61 | ineq1 | |
|
62 | 61 | rspceeqv | |
63 | 2 60 62 | sylancr | |
64 | retop | |
|
65 | ovex | |
|
66 | elrest | |
|
67 | 64 65 66 | mp2an | |
68 | 63 67 | sylibr | |
69 | iccssre | |
|
70 | 69 | adantr | |
71 | eqid | |
|
72 | 71 1 | resubmet | |
73 | 70 72 | syl | |
74 | 68 73 | eleqtrrd | |
75 | 74 | ex | |