| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brifs |
|
| 2 |
|
simp1l |
|
| 3 |
|
simp11 |
|
| 4 |
|
simp13 |
|
| 5 |
|
simp21 |
|
| 6 |
|
axbtwnid |
|
| 7 |
3 4 5 6
|
syl3anc |
|
| 8 |
2 7
|
syl5 |
|
| 9 |
|
simp2r |
|
| 10 |
|
simp3r |
|
| 11 |
9 10
|
jca |
|
| 12 |
|
opeq2 |
|
| 13 |
12
|
breq1d |
|
| 14 |
|
opeq1 |
|
| 15 |
14
|
breq1d |
|
| 16 |
13 15
|
anbi12d |
|
| 17 |
16
|
biimprd |
|
| 18 |
11 17
|
mpan9 |
|
| 19 |
|
simp31 |
|
| 20 |
|
simp32 |
|
| 21 |
|
cgrid2 |
|
| 22 |
3 4 19 20 21
|
syl13anc |
|
| 23 |
|
opeq1 |
|
| 24 |
23
|
breq2d |
|
| 25 |
24
|
biimprd |
|
| 26 |
22 25
|
syl6 |
|
| 27 |
26
|
impd |
|
| 28 |
18 27
|
syl5 |
|
| 29 |
28
|
expd |
|
| 30 |
8 29
|
mpdd |
|
| 31 |
|
opeq1 |
|
| 32 |
31
|
breq2d |
|
| 33 |
32
|
anbi1d |
|
| 34 |
31
|
breq1d |
|
| 35 |
34
|
anbi1d |
|
| 36 |
33 35
|
3anbi12d |
|
| 37 |
36
|
imbi1d |
|
| 38 |
30 37
|
imbitrrid |
|
| 39 |
|
simp12 |
|
| 40 |
|
btwndiff |
|
| 41 |
3 39 5 40
|
syl3anc |
|
| 42 |
|
simpl11 |
|
| 43 |
|
simpl23 |
|
| 44 |
|
simpl32 |
|
| 45 |
|
simpl21 |
|
| 46 |
|
simpr |
|
| 47 |
|
axsegcon |
|
| 48 |
42 43 44 45 46 47
|
syl122anc |
|
| 49 |
|
anass |
|
| 50 |
|
anass |
|
| 51 |
|
simplrl |
|
| 52 |
51
|
adantl |
|
| 53 |
|
simplll |
|
| 54 |
53
|
adantl |
|
| 55 |
52 54
|
jca |
|
| 56 |
|
simpr2l |
|
| 57 |
56
|
adantl |
|
| 58 |
|
simpllr |
|
| 59 |
58
|
adantl |
|
| 60 |
3
|
ad2antrr |
|
| 61 |
20
|
ad2antrr |
|
| 62 |
|
simplrr |
|
| 63 |
5
|
ad2antrr |
|
| 64 |
|
simplrl |
|
| 65 |
|
cgrcom |
|
| 66 |
60 61 62 63 64 65
|
syl122anc |
|
| 67 |
59 66
|
mpbid |
|
| 68 |
57 67
|
jca |
|
| 69 |
|
simprr3 |
|
| 70 |
55 68 69
|
3jca |
|
| 71 |
70
|
ex |
|
| 72 |
|
simpl11 |
|
| 73 |
|
simpl12 |
|
| 74 |
|
simpl21 |
|
| 75 |
|
simprl |
|
| 76 |
|
simpl22 |
|
| 77 |
|
simpl23 |
|
| 78 |
|
simpl32 |
|
| 79 |
|
simprr |
|
| 80 |
|
simpl33 |
|
| 81 |
|
brofs |
|
| 82 |
72 73 74 75 76 77 78 79 80 81
|
syl333anc |
|
| 83 |
71 82
|
sylibrd |
|
| 84 |
|
5segofs |
|
| 85 |
72 73 74 75 76 77 78 79 80 84
|
syl333anc |
|
| 86 |
83 85
|
syland |
|
| 87 |
|
simpr1l |
|
| 88 |
87
|
adantr |
|
| 89 |
51
|
adantr |
|
| 90 |
88 89
|
jca |
|
| 91 |
|
simpr1r |
|
| 92 |
91
|
adantr |
|
| 93 |
53
|
adantr |
|
| 94 |
90 92 93
|
jca32 |
|
| 95 |
|
simpl13 |
|
| 96 |
|
btwnexch3 |
|
| 97 |
72 73 95 74 75 96
|
syl122anc |
|
| 98 |
|
simpl31 |
|
| 99 |
|
btwnexch3 |
|
| 100 |
72 77 98 78 79 99
|
syl122anc |
|
| 101 |
97 100
|
anim12d |
|
| 102 |
94 101
|
syl5 |
|
| 103 |
102
|
imp |
|
| 104 |
|
btwncom |
|
| 105 |
72 74 95 75 104
|
syl13anc |
|
| 106 |
|
btwncom |
|
| 107 |
72 78 98 79 106
|
syl13anc |
|
| 108 |
105 107
|
anbi12d |
|
| 109 |
108
|
adantr |
|
| 110 |
103 109
|
mpbid |
|
| 111 |
58
|
ad2antrl |
|
| 112 |
72 78 79 74 75 65
|
syl122anc |
|
| 113 |
|
cgrcomlr |
|
| 114 |
72 74 75 78 79 113
|
syl122anc |
|
| 115 |
112 114
|
bitrd |
|
| 116 |
115
|
adantr |
|
| 117 |
111 116
|
mpbid |
|
| 118 |
|
simpr2r |
|
| 119 |
118
|
ad2antrl |
|
| 120 |
72 95 74 98 78 119
|
cgrcomlrand |
|
| 121 |
117 120
|
jca |
|
| 122 |
|
simprr |
|
| 123 |
|
simpr3r |
|
| 124 |
123
|
ad2antrl |
|
| 125 |
122 124
|
jca |
|
| 126 |
110 121 125
|
3jca |
|
| 127 |
126
|
ex |
|
| 128 |
|
brofs |
|
| 129 |
72 75 74 95 76 79 78 98 80 128
|
syl333anc |
|
| 130 |
127 129
|
sylibrd |
|
| 131 |
|
simplrr |
|
| 132 |
131
|
adantr |
|
| 133 |
132
|
necomd |
|
| 134 |
133
|
a1i |
|
| 135 |
130 134
|
jcad |
|
| 136 |
|
5segofs |
|
| 137 |
72 75 74 95 76 79 78 98 80 136
|
syl333anc |
|
| 138 |
135 137
|
syld |
|
| 139 |
138
|
expd |
|
| 140 |
139
|
adantrd |
|
| 141 |
86 140
|
mpdd |
|
| 142 |
50 141
|
biimtrrid |
|
| 143 |
49 142
|
biimtrrid |
|
| 144 |
143
|
expd |
|
| 145 |
144
|
anassrs |
|
| 146 |
145
|
rexlimdva |
|
| 147 |
48 146
|
mpd |
|
| 148 |
147
|
expd |
|
| 149 |
148
|
rexlimdva |
|
| 150 |
41 149
|
mpd |
|
| 151 |
150
|
expd |
|
| 152 |
151
|
com3r |
|
| 153 |
38 152
|
pm2.61ine |
|
| 154 |
1 153
|
sylbid |
|