Step |
Hyp |
Ref |
Expression |
1 |
|
brifs |
|
2 |
|
simp1l |
|
3 |
|
simp11 |
|
4 |
|
simp13 |
|
5 |
|
simp21 |
|
6 |
|
axbtwnid |
|
7 |
3 4 5 6
|
syl3anc |
|
8 |
2 7
|
syl5 |
|
9 |
|
simp2r |
|
10 |
|
simp3r |
|
11 |
9 10
|
jca |
|
12 |
|
opeq2 |
|
13 |
12
|
breq1d |
|
14 |
|
opeq1 |
|
15 |
14
|
breq1d |
|
16 |
13 15
|
anbi12d |
|
17 |
16
|
biimprd |
|
18 |
11 17
|
mpan9 |
|
19 |
|
simp31 |
|
20 |
|
simp32 |
|
21 |
|
cgrid2 |
|
22 |
3 4 19 20 21
|
syl13anc |
|
23 |
|
opeq1 |
|
24 |
23
|
breq2d |
|
25 |
24
|
biimprd |
|
26 |
22 25
|
syl6 |
|
27 |
26
|
impd |
|
28 |
18 27
|
syl5 |
|
29 |
28
|
expd |
|
30 |
8 29
|
mpdd |
|
31 |
|
opeq1 |
|
32 |
31
|
breq2d |
|
33 |
32
|
anbi1d |
|
34 |
31
|
breq1d |
|
35 |
34
|
anbi1d |
|
36 |
33 35
|
3anbi12d |
|
37 |
36
|
imbi1d |
|
38 |
30 37
|
syl5ibr |
|
39 |
|
simp12 |
|
40 |
|
btwndiff |
|
41 |
3 39 5 40
|
syl3anc |
|
42 |
|
simpl11 |
|
43 |
|
simpl23 |
|
44 |
|
simpl32 |
|
45 |
|
simpl21 |
|
46 |
|
simpr |
|
47 |
|
axsegcon |
|
48 |
42 43 44 45 46 47
|
syl122anc |
|
49 |
|
anass |
|
50 |
|
anass |
|
51 |
|
simplrl |
|
52 |
51
|
adantl |
|
53 |
|
simplll |
|
54 |
53
|
adantl |
|
55 |
52 54
|
jca |
|
56 |
|
simpr2l |
|
57 |
56
|
adantl |
|
58 |
|
simpllr |
|
59 |
58
|
adantl |
|
60 |
3
|
ad2antrr |
|
61 |
20
|
ad2antrr |
|
62 |
|
simplrr |
|
63 |
5
|
ad2antrr |
|
64 |
|
simplrl |
|
65 |
|
cgrcom |
|
66 |
60 61 62 63 64 65
|
syl122anc |
|
67 |
59 66
|
mpbid |
|
68 |
57 67
|
jca |
|
69 |
|
simprr3 |
|
70 |
55 68 69
|
3jca |
|
71 |
70
|
ex |
|
72 |
|
simpl11 |
|
73 |
|
simpl12 |
|
74 |
|
simpl21 |
|
75 |
|
simprl |
|
76 |
|
simpl22 |
|
77 |
|
simpl23 |
|
78 |
|
simpl32 |
|
79 |
|
simprr |
|
80 |
|
simpl33 |
|
81 |
|
brofs |
|
82 |
72 73 74 75 76 77 78 79 80 81
|
syl333anc |
|
83 |
71 82
|
sylibrd |
|
84 |
|
5segofs |
|
85 |
72 73 74 75 76 77 78 79 80 84
|
syl333anc |
|
86 |
83 85
|
syland |
|
87 |
|
simpr1l |
|
88 |
87
|
adantr |
|
89 |
51
|
adantr |
|
90 |
88 89
|
jca |
|
91 |
|
simpr1r |
|
92 |
91
|
adantr |
|
93 |
53
|
adantr |
|
94 |
90 92 93
|
jca32 |
|
95 |
|
simpl13 |
|
96 |
|
btwnexch3 |
|
97 |
72 73 95 74 75 96
|
syl122anc |
|
98 |
|
simpl31 |
|
99 |
|
btwnexch3 |
|
100 |
72 77 98 78 79 99
|
syl122anc |
|
101 |
97 100
|
anim12d |
|
102 |
94 101
|
syl5 |
|
103 |
102
|
imp |
|
104 |
|
btwncom |
|
105 |
72 74 95 75 104
|
syl13anc |
|
106 |
|
btwncom |
|
107 |
72 78 98 79 106
|
syl13anc |
|
108 |
105 107
|
anbi12d |
|
109 |
108
|
adantr |
|
110 |
103 109
|
mpbid |
|
111 |
58
|
ad2antrl |
|
112 |
72 78 79 74 75 65
|
syl122anc |
|
113 |
|
cgrcomlr |
|
114 |
72 74 75 78 79 113
|
syl122anc |
|
115 |
112 114
|
bitrd |
|
116 |
115
|
adantr |
|
117 |
111 116
|
mpbid |
|
118 |
|
simpr2r |
|
119 |
118
|
ad2antrl |
|
120 |
72 95 74 98 78 119
|
cgrcomlrand |
|
121 |
117 120
|
jca |
|
122 |
|
simprr |
|
123 |
|
simpr3r |
|
124 |
123
|
ad2antrl |
|
125 |
122 124
|
jca |
|
126 |
110 121 125
|
3jca |
|
127 |
126
|
ex |
|
128 |
|
brofs |
|
129 |
72 75 74 95 76 79 78 98 80 128
|
syl333anc |
|
130 |
127 129
|
sylibrd |
|
131 |
|
simplrr |
|
132 |
131
|
adantr |
|
133 |
132
|
necomd |
|
134 |
133
|
a1i |
|
135 |
130 134
|
jcad |
|
136 |
|
5segofs |
|
137 |
72 75 74 95 76 79 78 98 80 136
|
syl333anc |
|
138 |
135 137
|
syld |
|
139 |
138
|
expd |
|
140 |
139
|
adantrd |
|
141 |
86 140
|
mpdd |
|
142 |
50 141
|
syl5bir |
|
143 |
49 142
|
syl5bir |
|
144 |
143
|
expd |
|
145 |
144
|
anassrs |
|
146 |
145
|
rexlimdva |
|
147 |
48 146
|
mpd |
|
148 |
147
|
expd |
|
149 |
148
|
rexlimdva |
|
150 |
41 149
|
mpd |
|
151 |
150
|
expd |
|
152 |
151
|
com3r |
|
153 |
38 152
|
pm2.61ine |
|
154 |
1 153
|
sylbid |
|