Metamath Proof Explorer


Theorem ifscgr

Description: Inner five segment congruence. Take two triangles, A D C and E H G , with B between A and C and F between E and G . If the other components of the triangles are congruent, then so are B D and F H . Theorem 4.2 of Schwabhauser p. 34. (Contributed by Scott Fenton, 27-Sep-2013)

Ref Expression
Assertion ifscgr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D InnerFiveSeg E F G H B D Cgr F H

Proof

Step Hyp Ref Expression
1 brifs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D InnerFiveSeg E F G H B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H
2 simp1l B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B Btwn C C
3 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N N
4 simp13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B 𝔼 N
5 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C 𝔼 N
6 axbtwnid N B 𝔼 N C 𝔼 N B Btwn C C B = C
7 3 4 5 6 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C C B = C
8 2 7 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B = C
9 simp2r B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B C Cgr F G
10 simp3r B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C D Cgr G H
11 9 10 jca B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B C Cgr F G C D Cgr G H
12 opeq2 B = C B B = B C
13 12 breq1d B = C B B Cgr F G B C Cgr F G
14 opeq1 B = C B D = C D
15 14 breq1d B = C B D Cgr G H C D Cgr G H
16 13 15 anbi12d B = C B B Cgr F G B D Cgr G H B C Cgr F G C D Cgr G H
17 16 biimprd B = C B C Cgr F G C D Cgr G H B B Cgr F G B D Cgr G H
18 11 17 mpan9 B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B = C B B Cgr F G B D Cgr G H
19 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N F 𝔼 N
20 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N G 𝔼 N
21 cgrid2 N B 𝔼 N F 𝔼 N G 𝔼 N B B Cgr F G F = G
22 3 4 19 20 21 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B B Cgr F G F = G
23 opeq1 F = G F H = G H
24 23 breq2d F = G B D Cgr F H B D Cgr G H
25 24 biimprd F = G B D Cgr G H B D Cgr F H
26 22 25 syl6 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B B Cgr F G B D Cgr G H B D Cgr F H
27 26 impd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B B Cgr F G B D Cgr G H B D Cgr F H
28 18 27 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B = C B D Cgr F H
29 28 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B = C B D Cgr F H
30 8 29 mpdd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B D Cgr F H
31 opeq1 A = C A C = C C
32 31 breq2d A = C B Btwn A C B Btwn C C
33 32 anbi1d A = C B Btwn A C F Btwn E G B Btwn C C F Btwn E G
34 31 breq1d A = C A C Cgr E G C C Cgr E G
35 34 anbi1d A = C A C Cgr E G B C Cgr F G C C Cgr E G B C Cgr F G
36 33 35 3anbi12d A = C B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H
37 36 imbi1d A = C B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B D Cgr F H B Btwn C C F Btwn E G C C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B D Cgr F H
38 30 37 syl5ibr A = C N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B D Cgr F H
39 simp12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A 𝔼 N
40 btwndiff N A 𝔼 N C 𝔼 N e 𝔼 N C Btwn A e C e
41 3 39 5 40 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N C Btwn A e C e
42 simpl11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N N
43 simpl23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N E 𝔼 N
44 simpl32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N G 𝔼 N
45 simpl21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N C 𝔼 N
46 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N e 𝔼 N
47 axsegcon N E 𝔼 N G 𝔼 N C 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e
48 42 43 44 45 46 47 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e
49 anass G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C
50 anass G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C
51 simplrl G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C Btwn A e
52 51 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C Btwn A e
53 simplll G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H G Btwn E f
54 53 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H G Btwn E f
55 52 54 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C Btwn A e G Btwn E f
56 simpr2l G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C Cgr E G
57 56 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C Cgr E G
58 simpllr G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H G f Cgr C e
59 58 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H G f Cgr C e
60 3 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H N
61 20 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H G 𝔼 N
62 simplrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H f 𝔼 N
63 5 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C 𝔼 N
64 simplrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e 𝔼 N
65 cgrcom N G 𝔼 N f 𝔼 N C 𝔼 N e 𝔼 N G f Cgr C e C e Cgr G f
66 60 61 62 63 64 65 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H G f Cgr C e C e Cgr G f
67 59 66 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C e Cgr G f
68 57 67 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C Cgr E G C e Cgr G f
69 simprr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A D Cgr E H C D Cgr G H
70 55 68 69 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C Btwn A e G Btwn E f A C Cgr E G C e Cgr G f A D Cgr E H C D Cgr G H
71 70 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C Btwn A e G Btwn E f A C Cgr E G C e Cgr G f A D Cgr E H C D Cgr G H
72 simpl11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N N
73 simpl12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N A 𝔼 N
74 simpl21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N C 𝔼 N
75 simprl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N e 𝔼 N
76 simpl22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N D 𝔼 N
77 simpl23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N E 𝔼 N
78 simpl32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G 𝔼 N
79 simprr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N f 𝔼 N
80 simpl33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N H 𝔼 N
81 brofs N A 𝔼 N C 𝔼 N e 𝔼 N D 𝔼 N E 𝔼 N G 𝔼 N f 𝔼 N H 𝔼 N A C e D OuterFiveSeg E G f H C Btwn A e G Btwn E f A C Cgr E G C e Cgr G f A D Cgr E H C D Cgr G H
82 72 73 74 75 76 77 78 79 80 81 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N A C e D OuterFiveSeg E G f H C Btwn A e G Btwn E f A C Cgr E G C e Cgr G f A D Cgr E H C D Cgr G H
83 71 82 sylibrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C e D OuterFiveSeg E G f H
84 5segofs N A 𝔼 N C 𝔼 N e 𝔼 N D 𝔼 N E 𝔼 N G 𝔼 N f 𝔼 N H 𝔼 N A C e D OuterFiveSeg E G f H A C e D Cgr f H
85 72 73 74 75 76 77 78 79 80 84 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N A C e D OuterFiveSeg E G f H A C e D Cgr f H
86 83 85 syland N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C e D Cgr f H
87 simpr1l G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B Btwn A C
88 87 adantr G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H B Btwn A C
89 51 adantr G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C Btwn A e
90 88 89 jca G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H B Btwn A C C Btwn A e
91 simpr1r G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H F Btwn E G
92 91 adantr G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H F Btwn E G
93 53 adantr G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H G Btwn E f
94 90 92 93 jca32 G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H B Btwn A C C Btwn A e F Btwn E G G Btwn E f
95 simpl13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N B 𝔼 N
96 btwnexch3 N A 𝔼 N B 𝔼 N C 𝔼 N e 𝔼 N B Btwn A C C Btwn A e C Btwn B e
97 72 73 95 74 75 96 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C C Btwn A e C Btwn B e
98 simpl31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N F 𝔼 N
99 btwnexch3 N E 𝔼 N F 𝔼 N G 𝔼 N f 𝔼 N F Btwn E G G Btwn E f G Btwn F f
100 72 77 98 78 79 99 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N F Btwn E G G Btwn E f G Btwn F f
101 97 100 anim12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C C Btwn A e F Btwn E G G Btwn E f C Btwn B e G Btwn F f
102 94 101 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C Btwn B e G Btwn F f
103 102 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C Btwn B e G Btwn F f
104 btwncom N C 𝔼 N B 𝔼 N e 𝔼 N C Btwn B e C Btwn e B
105 72 74 95 75 104 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N C Btwn B e C Btwn e B
106 btwncom N G 𝔼 N F 𝔼 N f 𝔼 N G Btwn F f G Btwn f F
107 72 78 98 79 106 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn F f G Btwn f F
108 105 107 anbi12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N C Btwn B e G Btwn F f C Btwn e B G Btwn f F
109 108 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C Btwn B e G Btwn F f C Btwn e B G Btwn f F
110 103 109 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C Btwn e B G Btwn f F
111 58 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H G f Cgr C e
112 72 78 79 74 75 65 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G f Cgr C e C e Cgr G f
113 cgrcomlr N C 𝔼 N e 𝔼 N G 𝔼 N f 𝔼 N C e Cgr G f e C Cgr f G
114 72 74 75 78 79 113 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N C e Cgr G f e C Cgr f G
115 112 114 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G f Cgr C e e C Cgr f G
116 115 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H G f Cgr C e e C Cgr f G
117 111 116 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H e C Cgr f G
118 simpr2r G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B C Cgr F G
119 118 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H B C Cgr F G
120 72 95 74 98 78 119 cgrcomlrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C B Cgr G F
121 117 120 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H e C Cgr f G C B Cgr G F
122 simprr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H e D Cgr f H
123 simpr3r G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C D Cgr G H
124 123 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C D Cgr G H
125 122 124 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H e D Cgr f H C D Cgr G H
126 110 121 125 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C Btwn e B G Btwn f F e C Cgr f G C B Cgr G F e D Cgr f H C D Cgr G H
127 126 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C Btwn e B G Btwn f F e C Cgr f G C B Cgr G F e D Cgr f H C D Cgr G H
128 brofs N e 𝔼 N C 𝔼 N B 𝔼 N D 𝔼 N f 𝔼 N G 𝔼 N F 𝔼 N H 𝔼 N e C B D OuterFiveSeg f G F H C Btwn e B G Btwn f F e C Cgr f G C B Cgr G F e D Cgr f H C D Cgr G H
129 72 75 74 95 76 79 78 98 80 128 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N e C B D OuterFiveSeg f G F H C Btwn e B G Btwn f F e C Cgr f G C B Cgr G F e D Cgr f H C D Cgr G H
130 127 129 sylibrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H e C B D OuterFiveSeg f G F H
131 simplrr G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H C e
132 131 adantr G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H C e
133 132 necomd G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H e C
134 133 a1i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H e C
135 130 134 jcad N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H e C B D OuterFiveSeg f G F H e C
136 5segofs N e 𝔼 N C 𝔼 N B 𝔼 N D 𝔼 N f 𝔼 N G 𝔼 N F 𝔼 N H 𝔼 N e C B D OuterFiveSeg f G F H e C B D Cgr F H
137 72 75 74 95 76 79 78 98 80 136 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N e C B D OuterFiveSeg f G F H e C B D Cgr F H
138 135 137 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H B D Cgr F H
139 138 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H e D Cgr f H B D Cgr F H
140 139 adantrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C e D Cgr f H B D Cgr F H
141 86 140 mpdd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
142 50 141 syl5bir N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
143 49 142 syl5bir N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
144 143 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
145 144 anassrs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
146 145 rexlimdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N f 𝔼 N G Btwn E f G f Cgr C e C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
147 48 146 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
148 147 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
149 148 rexlimdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N e 𝔼 N C Btwn A e C e B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
150 41 149 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
151 150 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C B D Cgr F H
152 151 com3r A C N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B D Cgr F H
153 38 152 pm2.61ine N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B D Cgr F H
154 1 153 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D InnerFiveSeg E F G H B D Cgr F H