Metamath Proof Explorer


Theorem ifscgr

Description: Inner five segment congruence. Take two triangles, A D C and E H G , with B between A and C and F between E and G . If the other components of the triangles are congruent, then so are B D and F H . Theorem 4.2 of Schwabhauser p. 34. (Contributed by Scott Fenton, 27-Sep-2013)

Ref Expression
Assertion ifscgr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDInnerFiveSegEFGHBDCgrFH

Proof

Step Hyp Ref Expression
1 brifs NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDInnerFiveSegEFGHBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGH
2 simp1l BBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHBBtwnCC
3 simp11 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NN
4 simp13 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NB𝔼N
5 simp21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NC𝔼N
6 axbtwnid NB𝔼NC𝔼NBBtwnCCB=C
7 3 4 5 6 syl3anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCCB=C
8 2 7 syl5 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHB=C
9 simp2r BBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHBCCgrFG
10 simp3r BBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHCDCgrGH
11 9 10 jca BBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHBCCgrFGCDCgrGH
12 opeq2 B=CBB=BC
13 12 breq1d B=CBBCgrFGBCCgrFG
14 opeq1 B=CBD=CD
15 14 breq1d B=CBDCgrGHCDCgrGH
16 13 15 anbi12d B=CBBCgrFGBDCgrGHBCCgrFGCDCgrGH
17 16 biimprd B=CBCCgrFGCDCgrGHBBCgrFGBDCgrGH
18 11 17 mpan9 BBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHB=CBBCgrFGBDCgrGH
19 simp31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NF𝔼N
20 simp32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NG𝔼N
21 cgrid2 NB𝔼NF𝔼NG𝔼NBBCgrFGF=G
22 3 4 19 20 21 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBCgrFGF=G
23 opeq1 F=GFH=GH
24 23 breq2d F=GBDCgrFHBDCgrGH
25 24 biimprd F=GBDCgrGHBDCgrFH
26 22 25 syl6 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBCgrFGBDCgrGHBDCgrFH
27 26 impd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBCgrFGBDCgrGHBDCgrFH
28 18 27 syl5 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHB=CBDCgrFH
29 28 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHB=CBDCgrFH
30 8 29 mpdd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHBDCgrFH
31 opeq1 A=CAC=CC
32 31 breq2d A=CBBtwnACBBtwnCC
33 32 anbi1d A=CBBtwnACFBtwnEGBBtwnCCFBtwnEG
34 31 breq1d A=CACCgrEGCCCgrEG
35 34 anbi1d A=CACCgrEGBCCgrFGCCCgrEGBCCgrFG
36 33 35 3anbi12d A=CBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGH
37 36 imbi1d A=CBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBDCgrFHBBtwnCCFBtwnEGCCCgrEGBCCgrFGADCgrEHCDCgrGHBDCgrFH
38 30 37 imbitrrid A=CNA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBDCgrFH
39 simp12 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NA𝔼N
40 btwndiff NA𝔼NC𝔼Ne𝔼NCBtwnAeCe
41 3 39 5 40 syl3anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼NCBtwnAeCe
42 simpl11 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼NN
43 simpl23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼NE𝔼N
44 simpl32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼NG𝔼N
45 simpl21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼NC𝔼N
46 simpr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Ne𝔼N
47 axsegcon NE𝔼NG𝔼NC𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCe
48 42 43 44 45 46 47 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCe
49 anass GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHAC
50 anass GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHAC
51 simplrl GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHCBtwnAe
52 51 adantl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHCBtwnAe
53 simplll GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHGBtwnEf
54 53 adantl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHGBtwnEf
55 52 54 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHCBtwnAeGBtwnEf
56 simpr2l GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACCgrEG
57 56 adantl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACCgrEG
58 simpllr GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHGfCgrCe
59 58 adantl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHGfCgrCe
60 3 ad2antrr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHN
61 20 ad2antrr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHG𝔼N
62 simplrr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHf𝔼N
63 5 ad2antrr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHC𝔼N
64 simplrl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHe𝔼N
65 cgrcom NG𝔼Nf𝔼NC𝔼Ne𝔼NGfCgrCeCeCgrGf
66 60 61 62 63 64 65 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHGfCgrCeCeCgrGf
67 59 66 mpbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHCeCgrGf
68 57 67 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACCgrEGCeCgrGf
69 simprr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHADCgrEHCDCgrGH
70 55 68 69 3jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHCBtwnAeGBtwnEfACCgrEGCeCgrGfADCgrEHCDCgrGH
71 70 ex NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHCBtwnAeGBtwnEfACCgrEGCeCgrGfADCgrEHCDCgrGH
72 simpl11 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NN
73 simpl12 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NA𝔼N
74 simpl21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NC𝔼N
75 simprl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼Ne𝔼N
76 simpl22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼ND𝔼N
77 simpl23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NE𝔼N
78 simpl32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NG𝔼N
79 simprr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼Nf𝔼N
80 simpl33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NH𝔼N
81 brofs NA𝔼NC𝔼Ne𝔼ND𝔼NE𝔼NG𝔼Nf𝔼NH𝔼NACeDOuterFiveSegEGfHCBtwnAeGBtwnEfACCgrEGCeCgrGfADCgrEHCDCgrGH
82 72 73 74 75 76 77 78 79 80 81 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NACeDOuterFiveSegEGfHCBtwnAeGBtwnEfACCgrEGCeCgrGfADCgrEHCDCgrGH
83 71 82 sylibrd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACeDOuterFiveSegEGfH
84 5segofs NA𝔼NC𝔼Ne𝔼ND𝔼NE𝔼NG𝔼Nf𝔼NH𝔼NACeDOuterFiveSegEGfHACeDCgrfH
85 72 73 74 75 76 77 78 79 80 84 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NACeDOuterFiveSegEGfHACeDCgrfH
86 83 85 syland NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACeDCgrfH
87 simpr1l GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBBtwnAC
88 87 adantr GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHBBtwnAC
89 51 adantr GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCBtwnAe
90 88 89 jca GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHBBtwnACCBtwnAe
91 simpr1r GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHFBtwnEG
92 91 adantr GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHFBtwnEG
93 53 adantr GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHGBtwnEf
94 90 92 93 jca32 GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHBBtwnACCBtwnAeFBtwnEGGBtwnEf
95 simpl13 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NB𝔼N
96 btwnexch3 NA𝔼NB𝔼NC𝔼Ne𝔼NBBtwnACCBtwnAeCBtwnBe
97 72 73 95 74 75 96 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NBBtwnACCBtwnAeCBtwnBe
98 simpl31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NF𝔼N
99 btwnexch3 NE𝔼NF𝔼NG𝔼Nf𝔼NFBtwnEGGBtwnEfGBtwnFf
100 72 77 98 78 79 99 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NFBtwnEGGBtwnEfGBtwnFf
101 97 100 anim12d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NBBtwnACCBtwnAeFBtwnEGGBtwnEfCBtwnBeGBtwnFf
102 94 101 syl5 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCBtwnBeGBtwnFf
103 102 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCBtwnBeGBtwnFf
104 btwncom NC𝔼NB𝔼Ne𝔼NCBtwnBeCBtwneB
105 72 74 95 75 104 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NCBtwnBeCBtwneB
106 btwncom NG𝔼NF𝔼Nf𝔼NGBtwnFfGBtwnfF
107 72 78 98 79 106 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnFfGBtwnfF
108 105 107 anbi12d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NCBtwnBeGBtwnFfCBtwneBGBtwnfF
109 108 adantr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCBtwnBeGBtwnFfCBtwneBGBtwnfF
110 103 109 mpbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCBtwneBGBtwnfF
111 58 ad2antrl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHGfCgrCe
112 72 78 79 74 75 65 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGfCgrCeCeCgrGf
113 cgrcomlr NC𝔼Ne𝔼NG𝔼Nf𝔼NCeCgrGfeCCgrfG
114 72 74 75 78 79 113 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NCeCgrGfeCCgrfG
115 112 114 bitrd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGfCgrCeeCCgrfG
116 115 adantr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHGfCgrCeeCCgrfG
117 111 116 mpbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHeCCgrfG
118 simpr2r GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBCCgrFG
119 118 ad2antrl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHBCCgrFG
120 72 95 74 98 78 119 cgrcomlrand NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCBCgrGF
121 117 120 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHeCCgrfGCBCgrGF
122 simprr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHeDCgrfH
123 simpr3r GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHCDCgrGH
124 123 ad2antrl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCDCgrGH
125 122 124 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHeDCgrfHCDCgrGH
126 110 121 125 3jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCBtwneBGBtwnfFeCCgrfGCBCgrGFeDCgrfHCDCgrGH
127 126 ex NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCBtwneBGBtwnfFeCCgrfGCBCgrGFeDCgrfHCDCgrGH
128 brofs Ne𝔼NC𝔼NB𝔼ND𝔼Nf𝔼NG𝔼NF𝔼NH𝔼NeCBDOuterFiveSegfGFHCBtwneBGBtwnfFeCCgrfGCBCgrGFeDCgrfHCDCgrGH
129 72 75 74 95 76 79 78 98 80 128 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NeCBDOuterFiveSegfGFHCBtwneBGBtwnfFeCCgrfGCBCgrGFeDCgrfHCDCgrGH
130 127 129 sylibrd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHeCBDOuterFiveSegfGFH
131 simplrr GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHCe
132 131 adantr GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHCe
133 132 necomd GBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHeC
134 133 a1i NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHeC
135 130 134 jcad NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHeCBDOuterFiveSegfGFHeC
136 5segofs Ne𝔼NC𝔼NB𝔼ND𝔼Nf𝔼NG𝔼NF𝔼NH𝔼NeCBDOuterFiveSegfGFHeCBDCgrFH
137 72 75 74 95 76 79 78 98 80 136 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NeCBDOuterFiveSegfGFHeCBDCgrFH
138 135 137 syld NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHBDCgrFH
139 138 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHeDCgrfHBDCgrFH
140 139 adantrd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACeDCgrfHBDCgrFH
141 86 140 mpdd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
142 50 141 biimtrrid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
143 49 142 biimtrrid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
144 143 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
145 144 anassrs NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
146 145 rexlimdva NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼Nf𝔼NGBtwnEfGfCgrCeCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
147 48 146 mpd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼NCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
148 147 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼NCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
149 148 rexlimdva NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼Ne𝔼NCBtwnAeCeBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
150 41 149 mpd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
151 150 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACBDCgrFH
152 151 com3r ACNA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBDCgrFH
153 38 152 pm2.61ine NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBDCgrFH
154 1 153 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDInnerFiveSegEFGHBDCgrFH