Metamath Proof Explorer


Theorem iinhoiicclem

Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iinhoiicclem.k kφ
iinhoiicclem.a φkXA
iinhoiicclem.b φkXB
iinhoiicclem.f φFnkXAB+1n
Assertion iinhoiicclem φFkXAB

Proof

Step Hyp Ref Expression
1 iinhoiicclem.k kφ
2 iinhoiicclem.a φkXA
3 iinhoiicclem.b φkXB
4 iinhoiicclem.f φFnkXAB+1n
5 4 elexd φFV
6 1nn 1
7 6 a1i φ1
8 peano2re BB+1
9 3 8 syl φkXB+1
10 9 rexrd φkXB+1*
11 icossre AB+1*AB+1
12 2 10 11 syl2anc φkXAB+1
13 1 12 ixpssixp φkXAB+1kX
14 oveq2 n=11n=11
15 1div1e1 11=1
16 15 a1i n=111=1
17 14 16 eqtrd n=11n=1
18 17 oveq2d n=1B+1n=B+1
19 18 oveq2d n=1AB+1n=AB+1
20 19 ixpeq2dv n=1kXAB+1n=kXAB+1
21 20 sseq1d n=1kXAB+1nkXkXAB+1kX
22 21 rspcev 1kXAB+1kXnkXAB+1nkX
23 7 13 22 syl2anc φnkXAB+1nkX
24 iinss nkXAB+1nkXnkXAB+1nkX
25 23 24 syl φnkXAB+1nkX
26 25 4 sseldd φFkX
27 elixpconstg FnkXAB+1nFkXF:X
28 4 27 syl φFkXF:X
29 26 28 mpbid φF:X
30 29 ffnd φFFnX
31 29 ffvelcdmda φkXFk
32 2 rexrd φkXA*
33 ssid kXAB+1kXAB+1
34 33 a1i φkXAB+1kXAB+1
35 20 sseq1d n=1kXAB+1nkXAB+1kXAB+1kXAB+1
36 35 rspcev 1kXAB+1kXAB+1nkXAB+1nkXAB+1
37 7 34 36 syl2anc φnkXAB+1nkXAB+1
38 iinss nkXAB+1nkXAB+1nkXAB+1nkXAB+1
39 37 38 syl φnkXAB+1nkXAB+1
40 39 4 sseldd φFkXAB+1
41 40 adantr φkXFkXAB+1
42 simpr φkXkX
43 fvixp2 FkXAB+1kXFkAB+1
44 41 42 43 syl2anc φkXFkAB+1
45 icogelb A*B+1*FkAB+1AFk
46 32 10 44 45 syl3anc φkXAFk
47 31 adantr φkXnFk
48 3 adantr φkXnB
49 nnrecre n1n
50 49 adantl φkXn1n
51 48 50 readdcld φkXnB+1n
52 32 adantr φkXnA*
53 ressxr *
54 53 51 sselid φkXnB+1n*
55 eliin FVFnkXAB+1nnFkXAB+1n
56 5 55 syl φFnkXAB+1nnFkXAB+1n
57 4 56 mpbid φnFkXAB+1n
58 57 r19.21bi φnFkXAB+1n
59 elixp2 FkXAB+1nFVFFnXkXFkAB+1n
60 58 59 sylib φnFVFFnXkXFkAB+1n
61 60 simp3d φnkXFkAB+1n
62 61 r19.21bi φnkXFkAB+1n
63 62 an32s φkXnFkAB+1n
64 icoltub A*B+1n*FkAB+1nFk<B+1n
65 52 54 63 64 syl3anc φkXnFk<B+1n
66 47 51 65 ltled φkXnFkB+1n
67 66 ralrimiva φkXnFkB+1n
68 nfv nφkX
69 53 31 sselid φkXFk*
70 68 69 3 xrralrecnnle φkXFkBnFkB+1n
71 67 70 mpbird φkXFkB
72 2 3 31 46 71 eliccd φkXFkAB
73 72 ex φkXFkAB
74 1 73 ralrimi φkXFkAB
75 5 30 74 3jca φFVFFnXkXFkAB
76 elixp2 FkXABFVFFnXkXFkAB
77 75 76 sylibr φFkXAB