Metamath Proof Explorer


Theorem imasvscafn

Description: The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasvscaf.u φU=F𝑠R
imasvscaf.v φV=BaseR
imasvscaf.f φF:VontoB
imasvscaf.r φRZ
imasvscaf.g G=ScalarR
imasvscaf.k K=BaseG
imasvscaf.q ·˙=R
imasvscaf.s ˙=U
imasvscaf.e φpKaVqVFa=FqFp·˙a=Fp·˙q
Assertion imasvscafn φ˙FnK×B

Proof

Step Hyp Ref Expression
1 imasvscaf.u φU=F𝑠R
2 imasvscaf.v φV=BaseR
3 imasvscaf.f φF:VontoB
4 imasvscaf.r φRZ
5 imasvscaf.g G=ScalarR
6 imasvscaf.k K=BaseG
7 imasvscaf.q ·˙=R
8 imasvscaf.s ˙=U
9 imasvscaf.e φpKaVqVFa=FqFp·˙a=Fp·˙q
10 eqid pK,xFqFp·˙q=pK,xFqFp·˙q
11 fvex Fp·˙qV
12 10 11 fnmpoi pK,xFqFp·˙qFnK×Fq
13 fnrel pK,xFqFp·˙qFnK×FqRelpK,xFqFp·˙q
14 12 13 ax-mp RelpK,xFqFp·˙q
15 14 rgenw qVRelpK,xFqFp·˙q
16 reliun RelqVpK,xFqFp·˙qqVRelpK,xFqFp·˙q
17 15 16 mpbir RelqVpK,xFqFp·˙q
18 1 2 3 4 5 6 7 8 imasvsca φ˙=qVpK,xFqFp·˙q
19 18 releqd φRel˙RelqVpK,xFqFp·˙q
20 17 19 mpbiri φRel˙
21 dffn2 pK,xFqFp·˙qFnK×FqpK,xFqFp·˙q:K×FqV
22 12 21 mpbi pK,xFqFp·˙q:K×FqV
23 fssxp pK,xFqFp·˙q:K×FqVpK,xFqFp·˙qK×Fq×V
24 22 23 ax-mp pK,xFqFp·˙qK×Fq×V
25 fof F:VontoBF:VB
26 3 25 syl φF:VB
27 26 ffvelcdmda φqVFqB
28 27 snssd φqVFqB
29 xpss2 FqBK×FqK×B
30 xpss1 K×FqK×BK×Fq×VK×B×V
31 28 29 30 3syl φqVK×Fq×VK×B×V
32 24 31 sstrid φqVpK,xFqFp·˙qK×B×V
33 32 ralrimiva φqVpK,xFqFp·˙qK×B×V
34 iunss qVpK,xFqFp·˙qK×B×VqVpK,xFqFp·˙qK×B×V
35 33 34 sylibr φqVpK,xFqFp·˙qK×B×V
36 18 35 eqsstrd φ˙K×B×V
37 dmss ˙K×B×Vdom˙domK×B×V
38 36 37 syl φdom˙domK×B×V
39 vn0 V
40 dmxp VdomK×B×V=K×B
41 39 40 ax-mp domK×B×V=K×B
42 38 41 sseqtrdi φdom˙K×B
43 forn F:VontoBranF=B
44 3 43 syl φranF=B
45 44 xpeq2d φK×ranF=K×B
46 42 45 sseqtrrd φdom˙K×ranF
47 df-br pFa˙wpFaw˙
48 18 eleq2d φpFaw˙pFawqVpK,xFqFp·˙q
49 48 adantr φpKaVpFaw˙pFawqVpK,xFqFp·˙q
50 eliun pFawqVpK,xFqFp·˙qqVpFawpK,xFqFp·˙q
51 df-3an pKaVqVpKaVqV
52 10 mpofun FunpK,xFqFp·˙q
53 funopfv FunpK,xFqFp·˙qpFawpK,xFqFp·˙qpK,xFqFp·˙qpFa=w
54 52 53 ax-mp pFawpK,xFqFp·˙qpK,xFqFp·˙qpFa=w
55 df-ov ppK,xFqFp·˙qFa=pK,xFqFp·˙qpFa
56 opex pFaV
57 vex wV
58 56 57 opeldm pFawpK,xFqFp·˙qpFadompK,xFqFp·˙q
59 10 11 dmmpo dompK,xFqFp·˙q=K×Fq
60 58 59 eleqtrdi pFawpK,xFqFp·˙qpFaK×Fq
61 opelxp pFaK×FqpKFaFq
62 60 61 sylib pFawpK,xFqFp·˙qpKFaFq
63 fvoveq1 z=pFz·˙q=Fp·˙q
64 eqidd y=FaFp·˙q=Fp·˙q
65 fvoveq1 p=zFp·˙q=Fz·˙q
66 eqidd x=yFz·˙q=Fz·˙q
67 65 66 cbvmpov pK,xFqFp·˙q=zK,yFqFz·˙q
68 63 64 67 11 ovmpo pKFaFqppK,xFqFp·˙qFa=Fp·˙q
69 62 68 syl pFawpK,xFqFp·˙qppK,xFqFp·˙qFa=Fp·˙q
70 55 69 eqtr3id pFawpK,xFqFp·˙qpK,xFqFp·˙qpFa=Fp·˙q
71 54 70 eqtr3d pFawpK,xFqFp·˙qw=Fp·˙q
72 71 adantl φpKaVqVpFawpK,xFqFp·˙qw=Fp·˙q
73 elsni FaFqFa=Fq
74 62 73 simpl2im pFawpK,xFqFp·˙qFa=Fq
75 9 74 impel φpKaVqVpFawpK,xFqFp·˙qFp·˙a=Fp·˙q
76 72 75 eqtr4d φpKaVqVpFawpK,xFqFp·˙qw=Fp·˙a
77 76 ex φpKaVqVpFawpK,xFqFp·˙qw=Fp·˙a
78 51 77 sylan2br φpKaVqVpFawpK,xFqFp·˙qw=Fp·˙a
79 78 anassrs φpKaVqVpFawpK,xFqFp·˙qw=Fp·˙a
80 79 rexlimdva φpKaVqVpFawpK,xFqFp·˙qw=Fp·˙a
81 50 80 biimtrid φpKaVpFawqVpK,xFqFp·˙qw=Fp·˙a
82 49 81 sylbid φpKaVpFaw˙w=Fp·˙a
83 47 82 biimtrid φpKaVpFa˙ww=Fp·˙a
84 83 alrimiv φpKaVwpFa˙ww=Fp·˙a
85 mo2icl wpFa˙ww=Fp·˙a*wpFa˙w
86 84 85 syl φpKaV*wpFa˙w
87 86 ralrimivva φpKaV*wpFa˙w
88 fofn F:VontoBFFnV
89 opeq2 y=Fapy=pFa
90 89 breq1d y=Fapy˙wpFa˙w
91 90 mobidv y=Fa*wpy˙w*wpFa˙w
92 91 ralrn FFnVyranF*wpy˙waV*wpFa˙w
93 3 88 92 3syl φyranF*wpy˙waV*wpFa˙w
94 93 ralbidv φpKyranF*wpy˙wpKaV*wpFa˙w
95 87 94 mpbird φpKyranF*wpy˙w
96 breq1 x=pyx˙wpy˙w
97 96 mobidv x=py*wx˙w*wpy˙w
98 97 ralxp xK×ranF*wx˙wpKyranF*wpy˙w
99 95 98 sylibr φxK×ranF*wx˙w
100 ssralv dom˙K×ranFxK×ranF*wx˙wxdom˙*wx˙w
101 46 99 100 sylc φxdom˙*wx˙w
102 dffun7 Fun˙Rel˙xdom˙*wx˙w
103 20 101 102 sylanbrc φFun˙
104 eqimss2 ˙=qVpK,xFqFp·˙qqVpK,xFqFp·˙q˙
105 18 104 syl φqVpK,xFqFp·˙q˙
106 iunss qVpK,xFqFp·˙q˙qVpK,xFqFp·˙q˙
107 105 106 sylib φqVpK,xFqFp·˙q˙
108 107 r19.21bi φqVpK,xFqFp·˙q˙
109 108 adantrl φpKqVpK,xFqFp·˙q˙
110 dmss pK,xFqFp·˙q˙dompK,xFqFp·˙qdom˙
111 109 110 syl φpKqVdompK,xFqFp·˙qdom˙
112 59 111 eqsstrrid φpKqVK×Fqdom˙
113 simprl φpKqVpK
114 fvex FqV
115 114 snid FqFq
116 opelxpi pKFqFqpFqK×Fq
117 113 115 116 sylancl φpKqVpFqK×Fq
118 112 117 sseldd φpKqVpFqdom˙
119 118 ralrimivva φpKqVpFqdom˙
120 opeq2 y=Fqpy=pFq
121 120 eleq1d y=Fqpydom˙pFqdom˙
122 121 ralrn FFnVyranFpydom˙qVpFqdom˙
123 3 88 122 3syl φyranFpydom˙qVpFqdom˙
124 123 ralbidv φpKyranFpydom˙pKqVpFqdom˙
125 119 124 mpbird φpKyranFpydom˙
126 eleq1 x=pyxdom˙pydom˙
127 126 ralxp xK×ranFxdom˙pKyranFpydom˙
128 125 127 sylibr φxK×ranFxdom˙
129 dfss3 K×ranFdom˙xK×ranFxdom˙
130 128 129 sylibr φK×ranFdom˙
131 45 130 eqsstrrd φK×Bdom˙
132 42 131 eqssd φdom˙=K×B
133 df-fn ˙FnK×BFun˙dom˙=K×B
134 103 132 133 sylanbrc φ˙FnK×B