Metamath Proof Explorer


Theorem ismbf

Description: The predicate " F is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl . (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion ismbf F:AFMblFnxran.F-1xdomvol

Proof

Step Hyp Ref Expression
1 mbfdm FMblFndomFdomvol
2 fdm F:AdomF=A
3 2 eleq1d F:AdomFdomvolAdomvol
4 1 3 imbitrid F:AFMblFnAdomvol
5 ioomax −∞+∞=
6 ioorebas −∞+∞ran.
7 5 6 eqeltrri ran.
8 imaeq2 x=F-1x=F-1
9 8 eleq1d x=F-1xdomvolF-1domvol
10 9 rspcv ran.xran.F-1xdomvolF-1domvol
11 7 10 ax-mp xran.F-1xdomvolF-1domvol
12 fimacnv F:AF-1=A
13 12 eleq1d F:AF-1domvolAdomvol
14 11 13 imbitrid F:Axran.F-1xdomvolAdomvol
15 ismbf1 FMblFnF𝑝𝑚xran.F-1xdomvolF-1xdomvol
16 ffvelcdm F:AxAFx
17 16 adantlr F:AAdomvolxAFx
18 17 rered F:AAdomvolxAFx=Fx
19 18 mpteq2dva F:AAdomvolxAFx=xAFx
20 17 recnd F:AAdomvolxAFx
21 simpl F:AAdomvolF:A
22 21 feqmptd F:AAdomvolF=xAFx
23 ref :
24 23 a1i F:AAdomvol:
25 24 feqmptd F:AAdomvol=yy
26 fveq2 y=Fxy=Fx
27 20 22 25 26 fmptco F:AAdomvolF=xAFx
28 19 27 22 3eqtr4rd F:AAdomvolF=F
29 28 cnveqd F:AAdomvolF-1=F-1
30 29 imaeq1d F:AAdomvolF-1x=F-1x
31 30 eleq1d F:AAdomvolF-1xdomvolF-1xdomvol
32 imf :
33 32 a1i F:AAdomvol:
34 33 feqmptd F:AAdomvol=yy
35 fveq2 y=Fxy=Fx
36 20 22 34 35 fmptco F:AAdomvolF=xAFx
37 17 reim0d F:AAdomvolxAFx=0
38 37 mpteq2dva F:AAdomvolxAFx=xA0
39 36 38 eqtrd F:AAdomvolF=xA0
40 fconstmpt A×0=xA0
41 39 40 eqtr4di F:AAdomvolF=A×0
42 41 cnveqd F:AAdomvolF-1=A×0-1
43 42 imaeq1d F:AAdomvolF-1x=A×0-1x
44 simpr F:AAdomvolAdomvol
45 0re 0
46 mbfconstlem Adomvol0A×0-1xdomvol
47 44 45 46 sylancl F:AAdomvolA×0-1xdomvol
48 43 47 eqeltrd F:AAdomvolF-1xdomvol
49 48 biantrud F:AAdomvolF-1xdomvolF-1xdomvolF-1xdomvol
50 31 49 bitrd F:AAdomvolF-1xdomvolF-1xdomvolF-1xdomvol
51 50 ralbidv F:AAdomvolxran.F-1xdomvolxran.F-1xdomvolF-1xdomvol
52 ax-resscn
53 fss F:AF:A
54 52 53 mpan2 F:AF:A
55 mblss AdomvolA
56 cnex V
57 reex V
58 elpm2r VVF:AAF𝑝𝑚
59 56 57 58 mpanl12 F:AAF𝑝𝑚
60 54 55 59 syl2an F:AAdomvolF𝑝𝑚
61 60 biantrurd F:AAdomvolxran.F-1xdomvolF-1xdomvolF𝑝𝑚xran.F-1xdomvolF-1xdomvol
62 51 61 bitrd F:AAdomvolxran.F-1xdomvolF𝑝𝑚xran.F-1xdomvolF-1xdomvol
63 15 62 bitr4id F:AAdomvolFMblFnxran.F-1xdomvol
64 63 ex F:AAdomvolFMblFnxran.F-1xdomvol
65 4 14 64 pm5.21ndd F:AFMblFnxran.F-1xdomvol