Metamath Proof Explorer


Theorem isomennd

Description: Sufficient condition to prove that O is an outer measure. Definition 113A of Fremlin1 p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses isomennd.x φXV
isomennd.o φO:𝒫X0+∞
isomennd.o0 φO=0
isomennd.le φxXyxOyOx
isomennd.sa φa:𝒫XOnansum^nOan
Assertion isomennd φOOutMeas

Proof

Step Hyp Ref Expression
1 isomennd.x φXV
2 isomennd.o φO:𝒫X0+∞
3 isomennd.o0 φO=0
4 isomennd.le φxXyxOyOx
5 isomennd.sa φa:𝒫XOnansum^nOan
6 id O:𝒫X0+∞O:𝒫X0+∞
7 fdm O:𝒫X0+∞domO=𝒫X
8 7 feq2d O:𝒫X0+∞O:domO0+∞O:𝒫X0+∞
9 6 8 mpbird O:𝒫X0+∞O:domO0+∞
10 2 9 syl φO:domO0+∞
11 unipw 𝒫X=X
12 11 pweqi 𝒫𝒫X=𝒫X
13 12 a1i φ𝒫𝒫X=𝒫X
14 2 7 syl φdomO=𝒫X
15 14 unieqd φdomO=𝒫X
16 15 pweqd φ𝒫domO=𝒫𝒫X
17 13 16 14 3eqtr4rd φdomO=𝒫domO
18 10 17 3 jca31 φO:domO0+∞domO=𝒫domOO=0
19 simpl φx𝒫domOy𝒫xφ
20 simpr φx𝒫domOx𝒫domO
21 16 13 eqtrd φ𝒫domO=𝒫X
22 21 adantr φx𝒫domO𝒫domO=𝒫X
23 20 22 eleqtrd φx𝒫domOx𝒫X
24 elpwi x𝒫XxX
25 23 24 syl φx𝒫domOxX
26 25 adantrr φx𝒫domOy𝒫xxX
27 elpwi y𝒫xyx
28 27 adantl x𝒫domOy𝒫xyx
29 28 adantl φx𝒫domOy𝒫xyx
30 19 26 29 4 syl3anc φx𝒫domOy𝒫xOyOx
31 30 ralrimivva φx𝒫domOy𝒫xOyOx
32 0le0 00
33 32 a1i φx=00
34 unieq x=x=
35 uni0 =
36 35 a1i x==
37 34 36 eqtrd x=x=
38 37 fveq2d x=Ox=O
39 38 adantl φx=Ox=O
40 3 adantr φx=O=0
41 39 40 eqtrd φx=Ox=0
42 reseq2 x=Ox=O
43 res0 O=
44 43 a1i x=O=
45 42 44 eqtrd x=Ox=
46 45 fveq2d x=sum^Ox=sum^
47 sge00 sum^=0
48 47 a1i x=sum^=0
49 46 48 eqtrd x=sum^Ox=0
50 49 adantl φx=sum^Ox=0
51 41 50 breq12d φx=Oxsum^Ox00
52 33 51 mpbird φx=Oxsum^Ox
53 52 ad4ant14 φx𝒫domOxωx=Oxsum^Ox
54 simpl φx𝒫domOxω¬x=φx𝒫domOxω
55 neqne ¬x=x
56 55 adantl φx𝒫domOxω¬x=x
57 ssnnf1octb xωxfdomff:domf1-1 ontox
58 57 adantll φx𝒫domOxωxfdomff:domf1-1 ontox
59 2 ad2antrr φx𝒫domOdomff:domf1-1 ontoxO:𝒫X0+∞
60 3 ad2antrr φx𝒫domOdomff:domf1-1 ontoxO=0
61 simpr φx𝒫domOx𝒫domO
62 14 pweqd φ𝒫domO=𝒫𝒫X
63 62 adantr φx𝒫domO𝒫domO=𝒫𝒫X
64 61 63 eleqtrd φx𝒫domOx𝒫𝒫X
65 elpwi x𝒫𝒫Xx𝒫X
66 64 65 syl φx𝒫domOx𝒫X
67 66 adantr φx𝒫domOdomff:domf1-1 ontoxx𝒫X
68 simpl φx𝒫domOφ
69 68 5 sylan φx𝒫domOa:𝒫XOnansum^nOan
70 69 adantlr φx𝒫domOdomff:domf1-1 ontoxa:𝒫XOnansum^nOan
71 simprl φx𝒫domOdomff:domf1-1 ontoxdomf
72 simprr φx𝒫domOdomff:domf1-1 ontoxf:domf1-1 ontox
73 eleq1w m=nmdomfndomf
74 fveq2 m=nfm=fn
75 73 74 ifbieq1d m=nifmdomffm=ifndomffn
76 75 cbvmptv mifmdomffm=nifndomffn
77 59 60 67 70 71 72 76 isomenndlem φx𝒫domOdomff:domf1-1 ontoxOxsum^Ox
78 77 ex φx𝒫domOdomff:domf1-1 ontoxOxsum^Ox
79 78 ad2antrr φx𝒫domOxωxdomff:domf1-1 ontoxOxsum^Ox
80 79 exlimdv φx𝒫domOxωxfdomff:domf1-1 ontoxOxsum^Ox
81 58 80 mpd φx𝒫domOxωxOxsum^Ox
82 54 56 81 syl2anc φx𝒫domOxω¬x=Oxsum^Ox
83 53 82 pm2.61dan φx𝒫domOxωOxsum^Ox
84 83 ex φx𝒫domOxωOxsum^Ox
85 84 ralrimiva φx𝒫domOxωOxsum^Ox
86 18 31 85 jca31 φO:domO0+∞domO=𝒫domOO=0x𝒫domOy𝒫xOyOxx𝒫domOxωOxsum^Ox
87 1 pwexd φ𝒫XV
88 2 87 fexd φOV
89 isome OVOOutMeasO:domO0+∞domO=𝒫domOO=0x𝒫domOy𝒫xOyOxx𝒫domOxωOxsum^Ox
90 88 89 syl φOOutMeasO:domO0+∞domO=𝒫domOO=0x𝒫domOy𝒫xOyOxx𝒫domOxωOxsum^Ox
91 86 90 mpbird φOOutMeas