Metamath Proof Explorer


Theorem isomennd

Description: Sufficient condition to prove that O is an outer measure. Definition 113A of Fremlin1 p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses isomennd.x φ X V
isomennd.o φ O : 𝒫 X 0 +∞
isomennd.o0 φ O = 0
isomennd.le φ x X y x O y O x
isomennd.sa φ a : 𝒫 X O n a n sum^ n O a n
Assertion isomennd φ O OutMeas

Proof

Step Hyp Ref Expression
1 isomennd.x φ X V
2 isomennd.o φ O : 𝒫 X 0 +∞
3 isomennd.o0 φ O = 0
4 isomennd.le φ x X y x O y O x
5 isomennd.sa φ a : 𝒫 X O n a n sum^ n O a n
6 id O : 𝒫 X 0 +∞ O : 𝒫 X 0 +∞
7 fdm O : 𝒫 X 0 +∞ dom O = 𝒫 X
8 7 feq2d O : 𝒫 X 0 +∞ O : dom O 0 +∞ O : 𝒫 X 0 +∞
9 6 8 mpbird O : 𝒫 X 0 +∞ O : dom O 0 +∞
10 2 9 syl φ O : dom O 0 +∞
11 unipw 𝒫 X = X
12 11 pweqi 𝒫 𝒫 X = 𝒫 X
13 12 a1i φ 𝒫 𝒫 X = 𝒫 X
14 2 7 syl φ dom O = 𝒫 X
15 14 unieqd φ dom O = 𝒫 X
16 15 pweqd φ 𝒫 dom O = 𝒫 𝒫 X
17 13 16 14 3eqtr4rd φ dom O = 𝒫 dom O
18 10 17 3 jca31 φ O : dom O 0 +∞ dom O = 𝒫 dom O O = 0
19 simpl φ x 𝒫 dom O y 𝒫 x φ
20 simpr φ x 𝒫 dom O x 𝒫 dom O
21 16 13 eqtrd φ 𝒫 dom O = 𝒫 X
22 21 adantr φ x 𝒫 dom O 𝒫 dom O = 𝒫 X
23 20 22 eleqtrd φ x 𝒫 dom O x 𝒫 X
24 elpwi x 𝒫 X x X
25 23 24 syl φ x 𝒫 dom O x X
26 25 adantrr φ x 𝒫 dom O y 𝒫 x x X
27 elpwi y 𝒫 x y x
28 27 adantl x 𝒫 dom O y 𝒫 x y x
29 28 adantl φ x 𝒫 dom O y 𝒫 x y x
30 19 26 29 4 syl3anc φ x 𝒫 dom O y 𝒫 x O y O x
31 30 ralrimivva φ x 𝒫 dom O y 𝒫 x O y O x
32 0le0 0 0
33 32 a1i φ x = 0 0
34 unieq x = x =
35 uni0 =
36 35 a1i x = =
37 34 36 eqtrd x = x =
38 37 fveq2d x = O x = O
39 38 adantl φ x = O x = O
40 3 adantr φ x = O = 0
41 39 40 eqtrd φ x = O x = 0
42 reseq2 x = O x = O
43 res0 O =
44 43 a1i x = O =
45 42 44 eqtrd x = O x =
46 45 fveq2d x = sum^ O x = sum^
47 sge00 sum^ = 0
48 47 a1i x = sum^ = 0
49 46 48 eqtrd x = sum^ O x = 0
50 49 adantl φ x = sum^ O x = 0
51 41 50 breq12d φ x = O x sum^ O x 0 0
52 33 51 mpbird φ x = O x sum^ O x
53 52 ad4ant14 φ x 𝒫 dom O x ω x = O x sum^ O x
54 simpl φ x 𝒫 dom O x ω ¬ x = φ x 𝒫 dom O x ω
55 neqne ¬ x = x
56 55 adantl φ x 𝒫 dom O x ω ¬ x = x
57 ssnnf1octb x ω x f dom f f : dom f 1-1 onto x
58 57 adantll φ x 𝒫 dom O x ω x f dom f f : dom f 1-1 onto x
59 2 ad2antrr φ x 𝒫 dom O dom f f : dom f 1-1 onto x O : 𝒫 X 0 +∞
60 3 ad2antrr φ x 𝒫 dom O dom f f : dom f 1-1 onto x O = 0
61 simpr φ x 𝒫 dom O x 𝒫 dom O
62 14 pweqd φ 𝒫 dom O = 𝒫 𝒫 X
63 62 adantr φ x 𝒫 dom O 𝒫 dom O = 𝒫 𝒫 X
64 61 63 eleqtrd φ x 𝒫 dom O x 𝒫 𝒫 X
65 elpwi x 𝒫 𝒫 X x 𝒫 X
66 64 65 syl φ x 𝒫 dom O x 𝒫 X
67 66 adantr φ x 𝒫 dom O dom f f : dom f 1-1 onto x x 𝒫 X
68 simpl φ x 𝒫 dom O φ
69 68 5 sylan φ x 𝒫 dom O a : 𝒫 X O n a n sum^ n O a n
70 69 adantlr φ x 𝒫 dom O dom f f : dom f 1-1 onto x a : 𝒫 X O n a n sum^ n O a n
71 simprl φ x 𝒫 dom O dom f f : dom f 1-1 onto x dom f
72 simprr φ x 𝒫 dom O dom f f : dom f 1-1 onto x f : dom f 1-1 onto x
73 eleq1w m = n m dom f n dom f
74 fveq2 m = n f m = f n
75 73 74 ifbieq1d m = n if m dom f f m = if n dom f f n
76 75 cbvmptv m if m dom f f m = n if n dom f f n
77 59 60 67 70 71 72 76 isomenndlem φ x 𝒫 dom O dom f f : dom f 1-1 onto x O x sum^ O x
78 77 ex φ x 𝒫 dom O dom f f : dom f 1-1 onto x O x sum^ O x
79 78 ad2antrr φ x 𝒫 dom O x ω x dom f f : dom f 1-1 onto x O x sum^ O x
80 79 exlimdv φ x 𝒫 dom O x ω x f dom f f : dom f 1-1 onto x O x sum^ O x
81 58 80 mpd φ x 𝒫 dom O x ω x O x sum^ O x
82 54 56 81 syl2anc φ x 𝒫 dom O x ω ¬ x = O x sum^ O x
83 53 82 pm2.61dan φ x 𝒫 dom O x ω O x sum^ O x
84 83 ex φ x 𝒫 dom O x ω O x sum^ O x
85 84 ralrimiva φ x 𝒫 dom O x ω O x sum^ O x
86 18 31 85 jca31 φ O : dom O 0 +∞ dom O = 𝒫 dom O O = 0 x 𝒫 dom O y 𝒫 x O y O x x 𝒫 dom O x ω O x sum^ O x
87 1 pwexd φ 𝒫 X V
88 fex O : 𝒫 X 0 +∞ 𝒫 X V O V
89 2 87 88 syl2anc φ O V
90 isome O V O OutMeas O : dom O 0 +∞ dom O = 𝒫 dom O O = 0 x 𝒫 dom O y 𝒫 x O y O x x 𝒫 dom O x ω O x sum^ O x
91 89 90 syl φ O OutMeas O : dom O 0 +∞ dom O = 𝒫 dom O O = 0 x 𝒫 dom O y 𝒫 x O y O x x 𝒫 dom O x ω O x sum^ O x
92 86 91 mpbird φ O OutMeas