Metamath Proof Explorer


Theorem itg11

Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis i1f1.1 F=xifxA10
Assertion itg11 AdomvolvolA1F=volA

Proof

Step Hyp Ref Expression
1 i1f1.1 F=xifxA10
2 ovol0 vol*=0
3 0mbl domvol
4 mblvol domvolvol=vol*
5 3 4 ax-mp vol=vol*
6 itg10 1×0=0
7 2 5 6 3eqtr4ri 1×0=vol
8 noel ¬x
9 eleq2 A=xAx
10 8 9 mtbiri A=¬xA
11 10 iffalsed A=ifxA10=0
12 11 mpteq2dv A=xifxA10=x0
13 fconstmpt ×0=x0
14 12 1 13 3eqtr4g A=F=×0
15 14 fveq2d A=1F=1×0
16 fveq2 A=volA=vol
17 7 15 16 3eqtr4a A=1F=volA
18 17 a1i AdomvolvolAA=1F=volA
19 n0 AyyA
20 1 i1f1 AdomvolvolAFdom1
21 20 adantr AdomvolvolAyAFdom1
22 itg1val Fdom11F=zranF0zvolF-1z
23 21 22 syl AdomvolvolAyA1F=zranF0zvolF-1z
24 1 i1f1lem F:01AdomvolF-11=A
25 24 simpli F:01
26 frn F:01ranF01
27 25 26 ax-mp ranF01
28 ssdif ranF01ranF0010
29 27 28 ax-mp ranF0010
30 difprsnss 0101
31 29 30 sstri ranF01
32 31 a1i AdomvolvolAyAranF01
33 mblss AdomvolA
34 33 adantr AdomvolvolAA
35 34 sselda AdomvolvolAyAy
36 eleq1w x=yxAyA
37 36 ifbid x=yifxA10=ifyA10
38 1ex 1V
39 c0ex 0V
40 38 39 ifex ifyA10V
41 37 1 40 fvmpt yFy=ifyA10
42 35 41 syl AdomvolvolAyAFy=ifyA10
43 iftrue yAifyA10=1
44 43 adantl AdomvolvolAyAifyA10=1
45 42 44 eqtrd AdomvolvolAyAFy=1
46 ffn F:01FFn
47 25 46 ax-mp FFn
48 fnfvelrn FFnyFyranF
49 47 35 48 sylancr AdomvolvolAyAFyranF
50 45 49 eqeltrrd AdomvolvolAyA1ranF
51 ax-1ne0 10
52 eldifsn 1ranF01ranF10
53 50 51 52 sylanblrc AdomvolvolAyA1ranF0
54 53 snssd AdomvolvolAyA1ranF0
55 32 54 eqssd AdomvolvolAyAranF0=1
56 55 sumeq1d AdomvolvolAyAzranF0zvolF-1z=z1zvolF-1z
57 1re 1
58 24 simpri AdomvolF-11=A
59 58 ad2antrr AdomvolvolAyAF-11=A
60 59 fveq2d AdomvolvolAyAvolF-11=volA
61 60 oveq2d AdomvolvolAyA1volF-11=1volA
62 simplr AdomvolvolAyAvolA
63 62 recnd AdomvolvolAyAvolA
64 63 mullidd AdomvolvolAyA1volA=volA
65 61 64 eqtrd AdomvolvolAyA1volF-11=volA
66 65 63 eqeltrd AdomvolvolAyA1volF-11
67 id z=1z=1
68 sneq z=1z=1
69 68 imaeq2d z=1F-1z=F-11
70 69 fveq2d z=1volF-1z=volF-11
71 67 70 oveq12d z=1zvolF-1z=1volF-11
72 71 sumsn 11volF-11z1zvolF-1z=1volF-11
73 57 66 72 sylancr AdomvolvolAyAz1zvolF-1z=1volF-11
74 73 65 eqtrd AdomvolvolAyAz1zvolF-1z=volA
75 56 74 eqtrd AdomvolvolAyAzranF0zvolF-1z=volA
76 23 75 eqtrd AdomvolvolAyA1F=volA
77 76 ex AdomvolvolAyA1F=volA
78 77 exlimdv AdomvolvolAyyA1F=volA
79 19 78 biimtrid AdomvolvolAA1F=volA
80 18 79 pm2.61dne AdomvolvolA1F=volA