Metamath Proof Explorer


Theorem itg1ge0a

Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg10a.1 φFdom1
itg10a.2 φA
itg10a.3 φvol*A=0
itg1ge0a.4 φxA0Fx
Assertion itg1ge0a φ01F

Proof

Step Hyp Ref Expression
1 itg10a.1 φFdom1
2 itg10a.2 φA
3 itg10a.3 φvol*A=0
4 itg1ge0a.4 φxA0Fx
5 i1frn Fdom1ranFFin
6 1 5 syl φranFFin
7 difss ranF0ranF
8 ssfi ranFFinranF0ranFranF0Fin
9 6 7 8 sylancl φranF0Fin
10 i1ff Fdom1F:
11 1 10 syl φF:
12 11 frnd φranF
13 12 ssdifssd φranF0
14 13 sselda φkranF0k
15 i1fima2sn Fdom1kranF0volF-1k
16 1 15 sylan φkranF0volF-1k
17 14 16 remulcld φkranF0kvolF-1k
18 0le0 00
19 i1fima Fdom1F-1kdomvol
20 1 19 syl φF-1kdomvol
21 mblvol F-1kdomvolvolF-1k=vol*F-1k
22 20 21 syl φvolF-1k=vol*F-1k
23 22 ad2antrr φkranF0k<0volF-1k=vol*F-1k
24 11 ffnd φFFn
25 fniniseg FFnxF-1kxFx=k
26 24 25 syl φxF-1kxFx=k
27 26 ad2antrr φkranF0k<0xF-1kxFx=k
28 simprl φkranF0xFx=kx
29 eldif xAx¬xA
30 4 ex φxA0Fx
31 30 ad2antrr φkranF0xFx=kxA0Fx
32 simprr φkranF0xFx=kFx=k
33 32 breq2d φkranF0xFx=k0Fx0k
34 0red φkranF0xFx=k0
35 14 adantr φkranF0xFx=kk
36 34 35 lenltd φkranF0xFx=k0k¬k<0
37 33 36 bitrd φkranF0xFx=k0Fx¬k<0
38 31 37 sylibd φkranF0xFx=kxA¬k<0
39 29 38 biimtrrid φkranF0xFx=kx¬xA¬k<0
40 28 39 mpand φkranF0xFx=k¬xA¬k<0
41 40 con4d φkranF0xFx=kk<0xA
42 41 impancom φkranF0k<0xFx=kxA
43 27 42 sylbid φkranF0k<0xF-1kxA
44 43 ssrdv φkranF0k<0F-1kA
45 2 ad2antrr φkranF0k<0A
46 3 ad2antrr φkranF0k<0vol*A=0
47 ovolssnul F-1kAAvol*A=0vol*F-1k=0
48 44 45 46 47 syl3anc φkranF0k<0vol*F-1k=0
49 23 48 eqtrd φkranF0k<0volF-1k=0
50 49 oveq2d φkranF0k<0kvolF-1k=k0
51 14 recnd φkranF0k
52 51 adantr φkranF0k<0k
53 52 mul01d φkranF0k<0k0=0
54 50 53 eqtrd φkranF0k<0kvolF-1k=0
55 18 54 breqtrrid φkranF0k<00kvolF-1k
56 14 adantr φkranF00kk
57 16 adantr φkranF00kvolF-1k
58 simpr φkranF00k0k
59 20 ad2antrr φkranF00kF-1kdomvol
60 mblss F-1kdomvolF-1k
61 59 60 syl φkranF00kF-1k
62 ovolge0 F-1k0vol*F-1k
63 61 62 syl φkranF00k0vol*F-1k
64 22 ad2antrr φkranF00kvolF-1k=vol*F-1k
65 63 64 breqtrrd φkranF00k0volF-1k
66 56 57 58 65 mulge0d φkranF00k0kvolF-1k
67 0red φkranF00
68 55 66 14 67 ltlecasei φkranF00kvolF-1k
69 9 17 68 fsumge0 φ0kranF0kvolF-1k
70 itg1val Fdom11F=kranF0kvolF-1k
71 1 70 syl φ1F=kranF0kvolF-1k
72 69 71 breqtrrd φ01F