Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itg10a.1 | |
|
itg10a.2 | |
||
itg10a.3 | |
||
itg1ge0a.4 | |
||
Assertion | itg1ge0a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg10a.1 | |
|
2 | itg10a.2 | |
|
3 | itg10a.3 | |
|
4 | itg1ge0a.4 | |
|
5 | i1frn | |
|
6 | 1 5 | syl | |
7 | difss | |
|
8 | ssfi | |
|
9 | 6 7 8 | sylancl | |
10 | i1ff | |
|
11 | 1 10 | syl | |
12 | 11 | frnd | |
13 | 12 | ssdifssd | |
14 | 13 | sselda | |
15 | i1fima2sn | |
|
16 | 1 15 | sylan | |
17 | 14 16 | remulcld | |
18 | 0le0 | |
|
19 | i1fima | |
|
20 | 1 19 | syl | |
21 | mblvol | |
|
22 | 20 21 | syl | |
23 | 22 | ad2antrr | |
24 | 11 | ffnd | |
25 | fniniseg | |
|
26 | 24 25 | syl | |
27 | 26 | ad2antrr | |
28 | simprl | |
|
29 | eldif | |
|
30 | 4 | ex | |
31 | 30 | ad2antrr | |
32 | simprr | |
|
33 | 32 | breq2d | |
34 | 0red | |
|
35 | 14 | adantr | |
36 | 34 35 | lenltd | |
37 | 33 36 | bitrd | |
38 | 31 37 | sylibd | |
39 | 29 38 | biimtrrid | |
40 | 28 39 | mpand | |
41 | 40 | con4d | |
42 | 41 | impancom | |
43 | 27 42 | sylbid | |
44 | 43 | ssrdv | |
45 | 2 | ad2antrr | |
46 | 3 | ad2antrr | |
47 | ovolssnul | |
|
48 | 44 45 46 47 | syl3anc | |
49 | 23 48 | eqtrd | |
50 | 49 | oveq2d | |
51 | 14 | recnd | |
52 | 51 | adantr | |
53 | 52 | mul01d | |
54 | 50 53 | eqtrd | |
55 | 18 54 | breqtrrid | |
56 | 14 | adantr | |
57 | 16 | adantr | |
58 | simpr | |
|
59 | 20 | ad2antrr | |
60 | mblss | |
|
61 | 59 60 | syl | |
62 | ovolge0 | |
|
63 | 61 62 | syl | |
64 | 22 | ad2antrr | |
65 | 63 64 | breqtrrd | |
66 | 56 57 58 65 | mulge0d | |
67 | 0red | |
|
68 | 55 66 14 67 | ltlecasei | |
69 | 9 17 68 | fsumge0 | |
70 | itg1val | |
|
71 | 1 70 | syl | |
72 | 69 71 | breqtrrd | |