| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kqval.2 |  | 
						
							| 2 | 1 | kqtopon |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 |  | topontop |  | 
						
							| 5 | 3 4 | syl |  | 
						
							| 6 |  | toponss |  | 
						
							| 7 | 3 6 | sylan |  | 
						
							| 8 | 7 | sselda |  | 
						
							| 9 | 1 | kqffn |  | 
						
							| 10 | 9 | ad3antrrr |  | 
						
							| 11 |  | fvelrnb |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 8 12 | mpbid |  | 
						
							| 14 |  | simpllr |  | 
						
							| 15 | 1 | kqid |  | 
						
							| 16 | 15 | ad3antrrr |  | 
						
							| 17 |  | simplr |  | 
						
							| 18 |  | cnima |  | 
						
							| 19 | 16 17 18 | syl2anc |  | 
						
							| 20 | 9 | adantr |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | elpreima |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 | 23 | biimpar |  | 
						
							| 25 |  | regsep |  | 
						
							| 26 | 14 19 24 25 | syl3anc |  | 
						
							| 27 |  | simp-4l |  | 
						
							| 28 |  | simprl |  | 
						
							| 29 | 1 | kqopn |  | 
						
							| 30 | 27 28 29 | syl2anc |  | 
						
							| 31 |  | simprrl |  | 
						
							| 32 |  | simplrl |  | 
						
							| 33 | 1 | kqfvima |  | 
						
							| 34 | 27 28 32 33 | syl3anc |  | 
						
							| 35 | 31 34 | mpbid |  | 
						
							| 36 |  | topontop |  | 
						
							| 37 | 27 36 | syl |  | 
						
							| 38 |  | elssuni |  | 
						
							| 39 | 38 | ad2antrl |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 40 | clscld |  | 
						
							| 42 | 37 39 41 | syl2anc |  | 
						
							| 43 | 1 | kqcld |  | 
						
							| 44 | 27 42 43 | syl2anc |  | 
						
							| 45 | 40 | sscls |  | 
						
							| 46 | 37 39 45 | syl2anc |  | 
						
							| 47 |  | imass2 |  | 
						
							| 48 | 46 47 | syl |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 | 49 | clsss2 |  | 
						
							| 51 | 44 48 50 | syl2anc |  | 
						
							| 52 | 20 | ad3antrrr |  | 
						
							| 53 |  | fnfun |  | 
						
							| 54 | 52 53 | syl |  | 
						
							| 55 |  | simprrr |  | 
						
							| 56 |  | funimass2 |  | 
						
							| 57 | 54 55 56 | syl2anc |  | 
						
							| 58 | 51 57 | sstrd |  | 
						
							| 59 |  | eleq2 |  | 
						
							| 60 |  | fveq2 |  | 
						
							| 61 | 60 | sseq1d |  | 
						
							| 62 | 59 61 | anbi12d |  | 
						
							| 63 | 62 | rspcev |  | 
						
							| 64 | 30 35 58 63 | syl12anc |  | 
						
							| 65 | 26 64 | rexlimddv |  | 
						
							| 66 | 65 | expr |  | 
						
							| 67 |  | eleq1 |  | 
						
							| 68 |  | eleq1 |  | 
						
							| 69 | 68 | anbi1d |  | 
						
							| 70 | 69 | rexbidv |  | 
						
							| 71 | 67 70 | imbi12d |  | 
						
							| 72 | 66 71 | syl5ibcom |  | 
						
							| 73 | 72 | com23 |  | 
						
							| 74 | 73 | imp |  | 
						
							| 75 | 74 | an32s |  | 
						
							| 76 | 75 | rexlimdva |  | 
						
							| 77 | 13 76 | mpd |  | 
						
							| 78 | 77 | anasss |  | 
						
							| 79 | 78 | ralrimivva |  | 
						
							| 80 |  | isreg |  | 
						
							| 81 | 5 79 80 | sylanbrc |  |