Metamath Proof Explorer


Theorem kqreglem1

Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion kqreglem1 JTopOnXJRegKQJReg

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 1 kqtopon JTopOnXKQJTopOnranF
3 2 adantr JTopOnXJRegKQJTopOnranF
4 topontop KQJTopOnranFKQJTop
5 3 4 syl JTopOnXJRegKQJTop
6 toponss KQJTopOnranFaKQJaranF
7 3 6 sylan JTopOnXJRegaKQJaranF
8 7 sselda JTopOnXJRegaKQJbabranF
9 1 kqffn JTopOnXFFnX
10 9 ad3antrrr JTopOnXJRegaKQJbaFFnX
11 fvelrnb FFnXbranFzXFz=b
12 10 11 syl JTopOnXJRegaKQJbabranFzXFz=b
13 8 12 mpbid JTopOnXJRegaKQJbazXFz=b
14 simpllr JTopOnXJRegaKQJzXFzaJReg
15 1 kqid JTopOnXFJCnKQJ
16 15 ad3antrrr JTopOnXJRegaKQJzXFzaFJCnKQJ
17 simplr JTopOnXJRegaKQJzXFzaaKQJ
18 cnima FJCnKQJaKQJF-1aJ
19 16 17 18 syl2anc JTopOnXJRegaKQJzXFzaF-1aJ
20 9 adantr JTopOnXJRegFFnX
21 20 adantr JTopOnXJRegaKQJFFnX
22 elpreima FFnXzF-1azXFza
23 21 22 syl JTopOnXJRegaKQJzF-1azXFza
24 23 biimpar JTopOnXJRegaKQJzXFzazF-1a
25 regsep JRegF-1aJzF-1awJzwclsJwF-1a
26 14 19 24 25 syl3anc JTopOnXJRegaKQJzXFzawJzwclsJwF-1a
27 simp-4l JTopOnXJRegaKQJzXFzawJzwclsJwF-1aJTopOnX
28 simprl JTopOnXJRegaKQJzXFzawJzwclsJwF-1awJ
29 1 kqopn JTopOnXwJFwKQJ
30 27 28 29 syl2anc JTopOnXJRegaKQJzXFzawJzwclsJwF-1aFwKQJ
31 simprrl JTopOnXJRegaKQJzXFzawJzwclsJwF-1azw
32 simplrl JTopOnXJRegaKQJzXFzawJzwclsJwF-1azX
33 1 kqfvima JTopOnXwJzXzwFzFw
34 27 28 32 33 syl3anc JTopOnXJRegaKQJzXFzawJzwclsJwF-1azwFzFw
35 31 34 mpbid JTopOnXJRegaKQJzXFzawJzwclsJwF-1aFzFw
36 topontop JTopOnXJTop
37 27 36 syl JTopOnXJRegaKQJzXFzawJzwclsJwF-1aJTop
38 elssuni wJwJ
39 38 ad2antrl JTopOnXJRegaKQJzXFzawJzwclsJwF-1awJ
40 eqid J=J
41 40 clscld JTopwJclsJwClsdJ
42 37 39 41 syl2anc JTopOnXJRegaKQJzXFzawJzwclsJwF-1aclsJwClsdJ
43 1 kqcld JTopOnXclsJwClsdJFclsJwClsdKQJ
44 27 42 43 syl2anc JTopOnXJRegaKQJzXFzawJzwclsJwF-1aFclsJwClsdKQJ
45 40 sscls JTopwJwclsJw
46 37 39 45 syl2anc JTopOnXJRegaKQJzXFzawJzwclsJwF-1awclsJw
47 imass2 wclsJwFwFclsJw
48 46 47 syl JTopOnXJRegaKQJzXFzawJzwclsJwF-1aFwFclsJw
49 eqid KQJ=KQJ
50 49 clsss2 FclsJwClsdKQJFwFclsJwclsKQJFwFclsJw
51 44 48 50 syl2anc JTopOnXJRegaKQJzXFzawJzwclsJwF-1aclsKQJFwFclsJw
52 20 ad3antrrr JTopOnXJRegaKQJzXFzawJzwclsJwF-1aFFnX
53 fnfun FFnXFunF
54 52 53 syl JTopOnXJRegaKQJzXFzawJzwclsJwF-1aFunF
55 simprrr JTopOnXJRegaKQJzXFzawJzwclsJwF-1aclsJwF-1a
56 funimass2 FunFclsJwF-1aFclsJwa
57 54 55 56 syl2anc JTopOnXJRegaKQJzXFzawJzwclsJwF-1aFclsJwa
58 51 57 sstrd JTopOnXJRegaKQJzXFzawJzwclsJwF-1aclsKQJFwa
59 eleq2 m=FwFzmFzFw
60 fveq2 m=FwclsKQJm=clsKQJFw
61 60 sseq1d m=FwclsKQJmaclsKQJFwa
62 59 61 anbi12d m=FwFzmclsKQJmaFzFwclsKQJFwa
63 62 rspcev FwKQJFzFwclsKQJFwamKQJFzmclsKQJma
64 30 35 58 63 syl12anc JTopOnXJRegaKQJzXFzawJzwclsJwF-1amKQJFzmclsKQJma
65 26 64 rexlimddv JTopOnXJRegaKQJzXFzamKQJFzmclsKQJma
66 65 expr JTopOnXJRegaKQJzXFzamKQJFzmclsKQJma
67 eleq1 Fz=bFzaba
68 eleq1 Fz=bFzmbm
69 68 anbi1d Fz=bFzmclsKQJmabmclsKQJma
70 69 rexbidv Fz=bmKQJFzmclsKQJmamKQJbmclsKQJma
71 67 70 imbi12d Fz=bFzamKQJFzmclsKQJmabamKQJbmclsKQJma
72 66 71 syl5ibcom JTopOnXJRegaKQJzXFz=bbamKQJbmclsKQJma
73 72 com23 JTopOnXJRegaKQJzXbaFz=bmKQJbmclsKQJma
74 73 imp JTopOnXJRegaKQJzXbaFz=bmKQJbmclsKQJma
75 74 an32s JTopOnXJRegaKQJbazXFz=bmKQJbmclsKQJma
76 75 rexlimdva JTopOnXJRegaKQJbazXFz=bmKQJbmclsKQJma
77 13 76 mpd JTopOnXJRegaKQJbamKQJbmclsKQJma
78 77 anasss JTopOnXJRegaKQJbamKQJbmclsKQJma
79 78 ralrimivva JTopOnXJRegaKQJbamKQJbmclsKQJma
80 isreg KQJRegKQJTopaKQJbamKQJbmclsKQJma
81 5 79 80 sylanbrc JTopOnXJRegKQJReg