Metamath Proof Explorer


Theorem lcmfunsnlem2lem2

Description: Lemma 2 for lcmfunsnlem2 . (Contributed by AV, 26-Aug-2020)

Ref Expression
Assertion lcmfunsnlem2lem2 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn

Proof

Step Hyp Ref Expression
1 elun iyzniyzin
2 elun iyziyiz
3 simp1 zyyFinz
4 3 adantr zyyFinnz
5 4 adantl iyizzyyFinnz
6 sneq n=zn=z
7 6 uneq2d n=zyn=yz
8 7 fveq2d n=zlcm_yn=lcm_yz
9 oveq2 n=zlcm_ylcmn=lcm_ylcmz
10 8 9 eqeq12d n=zlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
11 10 rspcv znlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
12 5 11 syl iyizzyyFinnnlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
13 ssel yiyi
14 13 3ad2ant2 zyyFiniyi
15 14 adantr zyyFinniyi
16 15 impcom iyzyyFinni
17 lcmfcl yyFinlcm_y0
18 17 nn0zd yyFinlcm_y
19 18 3adant1 zyyFinlcm_y
20 19 adantr zyyFinnlcm_y
21 20 adantl iyzyyFinnlcm_y
22 lcmcl znzlcmn0
23 3 22 sylan zyyFinnzlcmn0
24 23 nn0zd zyyFinnzlcmn
25 24 adantl iyzyyFinnzlcmn
26 lcmcl lcm_yzlcmnlcm_ylcmzlcmn0
27 21 25 26 syl2anc iyzyyFinnlcm_ylcmzlcmn0
28 27 nn0zd iyzyyFinnlcm_ylcmzlcmn
29 breq1 k=iklcm_yilcm_y
30 29 rspcv iykyklcm_yilcm_y
31 dvdslcmf yyFinkyklcm_y
32 31 3adant1 zyyFinkyklcm_y
33 32 adantr zyyFinnkyklcm_y
34 30 33 impel iyzyyFinnilcm_y
35 20 24 jca zyyFinnlcm_yzlcmn
36 35 adantl iyzyyFinnlcm_yzlcmn
37 dvdslcm lcm_yzlcmnlcm_ylcm_ylcmzlcmnzlcmnlcm_ylcmzlcmn
38 37 simpld lcm_yzlcmnlcm_ylcm_ylcmzlcmn
39 36 38 syl iyzyyFinnlcm_ylcm_ylcmzlcmn
40 16 21 28 34 39 dvdstrd iyzyyFinnilcm_ylcmzlcmn
41 4 adantl iyzyyFinnz
42 simprr iyzyyFinnn
43 lcmass lcm_yznlcm_ylcmzlcmn=lcm_ylcmzlcmn
44 21 41 42 43 syl3anc iyzyyFinnlcm_ylcmzlcmn=lcm_ylcmzlcmn
45 40 44 breqtrrd iyzyyFinnilcm_ylcmzlcmn
46 45 ex iyzyyFinnilcm_ylcmzlcmn
47 elsni izi=z
48 17 3adant1 zyyFinlcm_y0
49 48 nn0zd zyyFinlcm_y
50 lcmcl lcm_yzlcm_ylcmz0
51 49 3 50 syl2anc zyyFinlcm_ylcmz0
52 51 nn0zd zyyFinlcm_ylcmz
53 52 adantr zyyFinnlcm_ylcmz
54 lcmcl lcm_ylcmznlcm_ylcmzlcmn0
55 52 54 sylan zyyFinnlcm_ylcmzlcmn0
56 55 nn0zd zyyFinnlcm_ylcmzlcmn
57 19 3 jca zyyFinlcm_yz
58 57 adantr zyyFinnlcm_yz
59 dvdslcm lcm_yzlcm_ylcm_ylcmzzlcm_ylcmz
60 59 simprd lcm_yzzlcm_ylcmz
61 58 60 syl zyyFinnzlcm_ylcmz
62 dvdslcm lcm_ylcmznlcm_ylcmzlcm_ylcmzlcmnnlcm_ylcmzlcmn
63 62 simpld lcm_ylcmznlcm_ylcmzlcm_ylcmzlcmn
64 52 63 sylan zyyFinnlcm_ylcmzlcm_ylcmzlcmn
65 4 53 56 61 64 dvdstrd zyyFinnzlcm_ylcmzlcmn
66 breq1 i=zilcm_ylcmzlcmnzlcm_ylcmzlcmn
67 65 66 imbitrrid i=zzyyFinnilcm_ylcmzlcmn
68 47 67 syl izzyyFinnilcm_ylcmzlcmn
69 46 68 jaoi iyizzyyFinnilcm_ylcmzlcmn
70 69 imp iyizzyyFinnilcm_ylcmzlcmn
71 oveq1 lcm_yz=lcm_ylcmzlcm_yzlcmn=lcm_ylcmzlcmn
72 71 breq2d lcm_yz=lcm_ylcmzilcm_yzlcmnilcm_ylcmzlcmn
73 70 72 syl5ibrcom iyizzyyFinnlcm_yz=lcm_ylcmzilcm_yzlcmn
74 12 73 syld iyizzyyFinnnlcm_yn=lcm_ylcmnilcm_yzlcmn
75 74 ex iyizzyyFinnnlcm_yn=lcm_ylcmnilcm_yzlcmn
76 2 75 sylbi iyzzyyFinnnlcm_yn=lcm_ylcmnilcm_yzlcmn
77 elsni ini=n
78 simp2 zyyFiny
79 snssi zz
80 79 3ad2ant1 zyyFinz
81 78 80 unssd zyyFinyz
82 simp3 zyyFinyFin
83 snfi zFin
84 unfi yFinzFinyzFin
85 82 83 84 sylancl zyyFinyzFin
86 lcmfcl yzyzFinlcm_yz0
87 81 85 86 syl2anc zyyFinlcm_yz0
88 87 nn0zd zyyFinlcm_yz
89 88 anim1i zyyFinnlcm_yzn
90 89 adantr zyyFinnnlcm_yn=lcm_ylcmnlcm_yzn
91 dvdslcm lcm_yznlcm_yzlcm_yzlcmnnlcm_yzlcmn
92 90 91 syl zyyFinnnlcm_yn=lcm_ylcmnlcm_yzlcm_yzlcmnnlcm_yzlcmn
93 92 simprd zyyFinnnlcm_yn=lcm_ylcmnnlcm_yzlcmn
94 breq1 i=nilcm_yzlcmnnlcm_yzlcmn
95 93 94 imbitrrid i=nzyyFinnnlcm_yn=lcm_ylcmnilcm_yzlcmn
96 95 expd i=nzyyFinnnlcm_yn=lcm_ylcmnilcm_yzlcmn
97 77 96 syl inzyyFinnnlcm_yn=lcm_ylcmnilcm_yzlcmn
98 76 97 jaoi iyzinzyyFinnnlcm_yn=lcm_ylcmnilcm_yzlcmn
99 1 98 sylbi iyznzyyFinnnlcm_yn=lcm_ylcmnilcm_yzlcmn
100 99 com13 nlcm_yn=lcm_ylcmnzyyFinniyznilcm_yzlcmn
101 100 expd nlcm_yn=lcm_ylcmnzyyFinniyznilcm_yzlcmn
102 101 adantl kmymklcm_yknlcm_yn=lcm_ylcmnzyyFinniyznilcm_yzlcmn
103 102 impcom zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnniyznilcm_yzlcmn
104 103 impcom nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmniyznilcm_yzlcmn
105 104 adantl 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmniyznilcm_yzlcmn
106 105 ralrimiv 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmniyznilcm_yzlcmn
107 lcmfunsnlem2lem1 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzlcmnk
108 89 adantr zyyFinn0yz0n0lcm_yzn
109 81 adantr zyyFinnyz
110 85 adantr zyyFinnyzFin
111 df-nel 0y¬0y
112 111 biimpi 0y¬0y
113 112 3ad2ant1 0yz0n0¬0y
114 elsni 0z0=z
115 114 eqcomd 0zz=0
116 115 necon3ai z0¬0z
117 116 3ad2ant2 0yz0n0¬0z
118 ioran ¬0y0z¬0y¬0z
119 113 117 118 sylanbrc 0yz0n0¬0y0z
120 elun 0yz0y0z
121 119 120 sylnibr 0yz0n0¬0yz
122 df-nel 0yz¬0yz
123 121 122 sylibr 0yz0n00yz
124 lcmfn0cl yzyzFin0yzlcm_yz
125 109 110 123 124 syl2an3an zyyFinn0yz0n0lcm_yz
126 125 nnne0d zyyFinn0yz0n0lcm_yz0
127 126 neneqd zyyFinn0yz0n0¬lcm_yz=0
128 neneq n0¬n=0
129 128 3ad2ant3 0yz0n0¬n=0
130 129 adantl zyyFinn0yz0n0¬n=0
131 ioran ¬lcm_yz=0n=0¬lcm_yz=0¬n=0
132 127 130 131 sylanbrc zyyFinn0yz0n0¬lcm_yz=0n=0
133 lcmn0cl lcm_yzn¬lcm_yz=0n=0lcm_yzlcmn
134 108 132 133 syl2anc zyyFinn0yz0n0lcm_yzlcmn
135 snssi nn
136 135 adantl zyyFinnn
137 109 136 unssd zyyFinnyzn
138 137 adantr zyyFinn0yz0n0yzn
139 83 84 mpan2 yFinyzFin
140 snfi nFin
141 unfi yzFinnFinyznFin
142 139 140 141 sylancl yFinyznFin
143 142 3ad2ant3 zyyFinyznFin
144 143 adantr zyyFinnyznFin
145 144 adantr zyyFinn0yz0n0yznFin
146 elun 0yzn0yz0n
147 nnel ¬0y0y
148 147 biimpri 0y¬0y
149 148 3mix1d 0y¬0y¬z0¬n0
150 nne ¬z0z=0
151 115 150 sylibr 0z¬z0
152 151 3mix2d 0z¬0y¬z0¬n0
153 149 152 jaoi 0y0z¬0y¬z0¬n0
154 120 153 sylbi 0yz¬0y¬z0¬n0
155 elsni 0n0=n
156 155 eqcomd 0nn=0
157 nne ¬n0n=0
158 156 157 sylibr 0n¬n0
159 158 3mix3d 0n¬0y¬z0¬n0
160 154 159 jaoi 0yz0n¬0y¬z0¬n0
161 146 160 sylbi 0yzn¬0y¬z0¬n0
162 3ianor ¬0yz0n0¬0y¬z0¬n0
163 161 162 sylibr 0yzn¬0yz0n0
164 163 con2i 0yz0n0¬0yzn
165 df-nel 0yzn¬0yzn
166 164 165 sylibr 0yz0n00yzn
167 166 adantl zyyFinn0yz0n00yzn
168 138 145 167 3jca zyyFinn0yz0n0yznyznFin0yzn
169 134 168 jca zyyFinn0yz0n0lcm_yzlcmnyznyznFin0yzn
170 169 ex zyyFinn0yz0n0lcm_yzlcmnyznyznFin0yzn
171 170 ex zyyFinn0yz0n0lcm_yzlcmnyznyznFin0yzn
172 171 adantr zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnn0yz0n0lcm_yzlcmnyznyznFin0yzn
173 172 impcom nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmn0yz0n0lcm_yzlcmnyznyznFin0yzn
174 173 impcom 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzlcmnyznyznFin0yzn
175 lcmf lcm_yzlcmnyznyznFin0yznlcm_yzlcmn=lcm_yzniyznilcm_yzlcmnkiyzniklcm_yzlcmnk
176 174 175 syl 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzlcmn=lcm_yzniyznilcm_yzlcmnkiyzniklcm_yzlcmnk
177 106 107 176 mpbir2and 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzlcmn=lcm_yzn
178 177 eqcomd 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnlcm_yzn=lcm_yzlcmn