Metamath Proof Explorer


Theorem lcvexchlem4

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S = LSubSp W
lcvexch.p ˙ = LSSum W
lcvexch.c C = L W
lcvexch.w φ W LMod
lcvexch.t φ T S
lcvexch.u φ U S
lcvexch.f φ T C T ˙ U
Assertion lcvexchlem4 φ T U C U

Proof

Step Hyp Ref Expression
1 lcvexch.s S = LSubSp W
2 lcvexch.p ˙ = LSSum W
3 lcvexch.c C = L W
4 lcvexch.w φ W LMod
5 lcvexch.t φ T S
6 lcvexch.u φ U S
7 lcvexch.f φ T C T ˙ U
8 1 2 lsmcl W LMod T S U S T ˙ U S
9 4 5 6 8 syl3anc φ T ˙ U S
10 1 3 4 5 9 7 lcvpss φ T T ˙ U
11 1 2 3 4 5 6 lcvexchlem1 φ T T ˙ U T U U
12 10 11 mpbid φ T U U
13 4 3ad2ant1 φ s S T U s s U W LMod
14 1 lsssssubg W LMod S SubGrp W
15 13 14 syl φ s S T U s s U S SubGrp W
16 simp2 φ s S T U s s U s S
17 15 16 sseldd φ s S T U s s U s SubGrp W
18 5 3ad2ant1 φ s S T U s s U T S
19 15 18 sseldd φ s S T U s s U T SubGrp W
20 2 lsmub2 s SubGrp W T SubGrp W T s ˙ T
21 17 19 20 syl2anc φ s S T U s s U T s ˙ T
22 6 3ad2ant1 φ s S T U s s U U S
23 15 22 sseldd φ s S T U s s U U SubGrp W
24 simp3r φ s S T U s s U s U
25 2 lsmless1 U SubGrp W T SubGrp W s U s ˙ T U ˙ T
26 23 19 24 25 syl3anc φ s S T U s s U s ˙ T U ˙ T
27 lmodabl W LMod W Abel
28 4 27 syl φ W Abel
29 4 14 syl φ S SubGrp W
30 29 5 sseldd φ T SubGrp W
31 29 6 sseldd φ U SubGrp W
32 2 lsmcom W Abel T SubGrp W U SubGrp W T ˙ U = U ˙ T
33 28 30 31 32 syl3anc φ T ˙ U = U ˙ T
34 33 3ad2ant1 φ s S T U s s U T ˙ U = U ˙ T
35 26 34 sseqtrrd φ s S T U s s U s ˙ T T ˙ U
36 7 3ad2ant1 φ s S T U s s U T C T ˙ U
37 1 3 4 5 9 lcvbr3 φ T C T ˙ U T T ˙ U r S T r r T ˙ U r = T r = T ˙ U
38 37 adantr φ s S T C T ˙ U T T ˙ U r S T r r T ˙ U r = T r = T ˙ U
39 4 adantr φ s S W LMod
40 simpr φ s S s S
41 5 adantr φ s S T S
42 1 2 lsmcl W LMod s S T S s ˙ T S
43 39 40 41 42 syl3anc φ s S s ˙ T S
44 sseq2 r = s ˙ T T r T s ˙ T
45 sseq1 r = s ˙ T r T ˙ U s ˙ T T ˙ U
46 44 45 anbi12d r = s ˙ T T r r T ˙ U T s ˙ T s ˙ T T ˙ U
47 eqeq1 r = s ˙ T r = T s ˙ T = T
48 eqeq1 r = s ˙ T r = T ˙ U s ˙ T = T ˙ U
49 47 48 orbi12d r = s ˙ T r = T r = T ˙ U s ˙ T = T s ˙ T = T ˙ U
50 46 49 imbi12d r = s ˙ T T r r T ˙ U r = T r = T ˙ U T s ˙ T s ˙ T T ˙ U s ˙ T = T s ˙ T = T ˙ U
51 50 rspcv s ˙ T S r S T r r T ˙ U r = T r = T ˙ U T s ˙ T s ˙ T T ˙ U s ˙ T = T s ˙ T = T ˙ U
52 43 51 syl φ s S r S T r r T ˙ U r = T r = T ˙ U T s ˙ T s ˙ T T ˙ U s ˙ T = T s ˙ T = T ˙ U
53 52 adantld φ s S T T ˙ U r S T r r T ˙ U r = T r = T ˙ U T s ˙ T s ˙ T T ˙ U s ˙ T = T s ˙ T = T ˙ U
54 38 53 sylbid φ s S T C T ˙ U T s ˙ T s ˙ T T ˙ U s ˙ T = T s ˙ T = T ˙ U
55 54 3adant3 φ s S T U s s U T C T ˙ U T s ˙ T s ˙ T T ˙ U s ˙ T = T s ˙ T = T ˙ U
56 36 55 mpd φ s S T U s s U T s ˙ T s ˙ T T ˙ U s ˙ T = T s ˙ T = T ˙ U
57 21 35 56 mp2and φ s S T U s s U s ˙ T = T s ˙ T = T ˙ U
58 ineq1 s ˙ T = T s ˙ T U = T U
59 simp3l φ s S T U s s U T U s
60 1 2 3 13 18 22 16 59 24 lcvexchlem2 φ s S T U s s U s ˙ T U = s
61 60 eqeq1d φ s S T U s s U s ˙ T U = T U s = T U
62 58 61 syl5ib φ s S T U s s U s ˙ T = T s = T U
63 ineq1 s ˙ T = T ˙ U s ˙ T U = T ˙ U U
64 2 lsmub2 T SubGrp W U SubGrp W U T ˙ U
65 19 23 64 syl2anc φ s S T U s s U U T ˙ U
66 sseqin2 U T ˙ U T ˙ U U = U
67 65 66 sylib φ s S T U s s U T ˙ U U = U
68 60 67 eqeq12d φ s S T U s s U s ˙ T U = T ˙ U U s = U
69 63 68 syl5ib φ s S T U s s U s ˙ T = T ˙ U s = U
70 62 69 orim12d φ s S T U s s U s ˙ T = T s ˙ T = T ˙ U s = T U s = U
71 57 70 mpd φ s S T U s s U s = T U s = U
72 71 3exp φ s S T U s s U s = T U s = U
73 72 ralrimiv φ s S T U s s U s = T U s = U
74 1 lssincl W LMod T S U S T U S
75 4 5 6 74 syl3anc φ T U S
76 1 3 4 75 6 lcvbr3 φ T U C U T U U s S T U s s U s = T U s = U
77 12 73 76 mpbir2and φ T U C U