| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvexch.s |
|
| 2 |
|
lcvexch.p |
|
| 3 |
|
lcvexch.c |
|
| 4 |
|
lcvexch.w |
|
| 5 |
|
lcvexch.t |
|
| 6 |
|
lcvexch.u |
|
| 7 |
|
lcvexch.f |
|
| 8 |
1 2
|
lsmcl |
|
| 9 |
4 5 6 8
|
syl3anc |
|
| 10 |
1 3 4 5 9 7
|
lcvpss |
|
| 11 |
1 2 3 4 5 6
|
lcvexchlem1 |
|
| 12 |
10 11
|
mpbid |
|
| 13 |
4
|
3ad2ant1 |
|
| 14 |
1
|
lsssssubg |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
simp2 |
|
| 17 |
15 16
|
sseldd |
|
| 18 |
5
|
3ad2ant1 |
|
| 19 |
15 18
|
sseldd |
|
| 20 |
2
|
lsmub2 |
|
| 21 |
17 19 20
|
syl2anc |
|
| 22 |
6
|
3ad2ant1 |
|
| 23 |
15 22
|
sseldd |
|
| 24 |
|
simp3r |
|
| 25 |
2
|
lsmless1 |
|
| 26 |
23 19 24 25
|
syl3anc |
|
| 27 |
|
lmodabl |
|
| 28 |
4 27
|
syl |
|
| 29 |
4 14
|
syl |
|
| 30 |
29 5
|
sseldd |
|
| 31 |
29 6
|
sseldd |
|
| 32 |
2
|
lsmcom |
|
| 33 |
28 30 31 32
|
syl3anc |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
26 34
|
sseqtrrd |
|
| 36 |
7
|
3ad2ant1 |
|
| 37 |
1 3 4 5 9
|
lcvbr3 |
|
| 38 |
37
|
adantr |
|
| 39 |
4
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
5
|
adantr |
|
| 42 |
1 2
|
lsmcl |
|
| 43 |
39 40 41 42
|
syl3anc |
|
| 44 |
|
sseq2 |
|
| 45 |
|
sseq1 |
|
| 46 |
44 45
|
anbi12d |
|
| 47 |
|
eqeq1 |
|
| 48 |
|
eqeq1 |
|
| 49 |
47 48
|
orbi12d |
|
| 50 |
46 49
|
imbi12d |
|
| 51 |
50
|
rspcv |
|
| 52 |
43 51
|
syl |
|
| 53 |
52
|
adantld |
|
| 54 |
38 53
|
sylbid |
|
| 55 |
54
|
3adant3 |
|
| 56 |
36 55
|
mpd |
|
| 57 |
21 35 56
|
mp2and |
|
| 58 |
|
ineq1 |
|
| 59 |
|
simp3l |
|
| 60 |
1 2 3 13 18 22 16 59 24
|
lcvexchlem2 |
|
| 61 |
60
|
eqeq1d |
|
| 62 |
58 61
|
imbitrid |
|
| 63 |
|
ineq1 |
|
| 64 |
2
|
lsmub2 |
|
| 65 |
19 23 64
|
syl2anc |
|
| 66 |
|
sseqin2 |
|
| 67 |
65 66
|
sylib |
|
| 68 |
60 67
|
eqeq12d |
|
| 69 |
63 68
|
imbitrid |
|
| 70 |
62 69
|
orim12d |
|
| 71 |
57 70
|
mpd |
|
| 72 |
71
|
3exp |
|
| 73 |
72
|
ralrimiv |
|
| 74 |
1
|
lssincl |
|
| 75 |
4 5 6 74
|
syl3anc |
|
| 76 |
1 3 4 75 6
|
lcvbr3 |
|
| 77 |
12 73 76
|
mpbir2and |
|