Description: Lemma for lgamf and lgamcvg . (Contributed by Mario Carneiro, 8-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lgamucov.u | |
|
lgamucov.a | |
||
lgamcvglem.g | |
||
Assertion | lgamcvglem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgamucov.u | |
|
2 | lgamucov.a | |
|
3 | lgamcvglem.g | |
|
4 | 1 2 | lgamucov2 | |
5 | fveq2 | |
|
6 | 5 | eleq1d | |
7 | simprl | |
|
8 | fveq2 | |
|
9 | 8 | breq1d | |
10 | fvoveq1 | |
|
11 | 10 | breq2d | |
12 | 11 | ralbidv | |
13 | 9 12 | anbi12d | |
14 | 13 | cbvrabv | |
15 | 1 14 | eqtri | |
16 | eqid | |
|
17 | 7 15 16 | lgamgulm2 | |
18 | 17 | simpld | |
19 | simprr | |
|
20 | 6 18 19 | rspcdva | |
21 | nnuz | |
|
22 | 1zzd | |
|
23 | 1z | |
|
24 | seqfn | |
|
25 | 23 24 | ax-mp | |
26 | 21 | fneq2i | |
27 | 25 26 | mpbir | |
28 | 17 | simprd | |
29 | ulmf2 | |
|
30 | 27 28 29 | sylancr | |
31 | seqex | |
|
32 | 31 | a1i | |
33 | cnex | |
|
34 | 1 33 | rabex2 | |
35 | 34 | a1i | |
36 | simpr | |
|
37 | 36 21 | eleqtrdi | |
38 | fz1ssnn | |
|
39 | 38 | a1i | |
40 | ovexd | |
|
41 | 35 37 39 40 | seqof2 | |
42 | simplr | |
|
43 | 42 | oveq1d | |
44 | 42 | oveq1d | |
45 | 44 | fvoveq1d | |
46 | 43 45 | oveq12d | |
47 | 46 | mpteq2dva | |
48 | 47 3 | eqtr4di | |
49 | 48 | seqeq3d | |
50 | 49 | fveq1d | |
51 | simplrr | |
|
52 | fvexd | |
|
53 | 41 50 51 52 | fvmptd | |
54 | 21 22 30 19 32 53 28 | ulmclm | |
55 | fveq2 | |
|
56 | 5 55 | oveq12d | |
57 | eqid | |
|
58 | ovex | |
|
59 | 56 57 58 | fvmpt | |
60 | 19 59 | syl | |
61 | 54 60 | breqtrd | |
62 | 20 61 | jca | |
63 | 4 62 | rexlimddv | |