Metamath Proof Explorer


Theorem lgamcvglem

Description: Lemma for lgamf and lgamcvg . (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Hypotheses lgamucov.u U=x|xrk01rx+k
lgamucov.a φA
lgamcvglem.g G=mAlogm+1mlogAm+1
Assertion lgamcvglem φlogΓAseq1+GlogΓA+logA

Proof

Step Hyp Ref Expression
1 lgamucov.u U=x|xrk01rx+k
2 lgamucov.a φA
3 lgamcvglem.g G=mAlogm+1mlogAm+1
4 1 2 lgamucov2 φrAU
5 fveq2 z=AlogΓz=logΓA
6 5 eleq1d z=AlogΓzlogΓA
7 simprl φrAUr
8 fveq2 x=tx=t
9 8 breq1d x=txrtr
10 fvoveq1 x=tx+k=t+k
11 10 breq2d x=t1rx+k1rt+k
12 11 ralbidv x=tk01rx+kk01rt+k
13 9 12 anbi12d x=txrk01rx+ktrk01rt+k
14 13 cbvrabv x|xrk01rx+k=t|trk01rt+k
15 1 14 eqtri U=t|trk01rt+k
16 eqid mzUzlogm+1mlogzm+1=mzUzlogm+1mlogzm+1
17 7 15 16 lgamgulm2 φrAUzUlogΓzseq1f+mzUzlogm+1mlogzm+1uUzUlogΓz+logz
18 17 simpld φrAUzUlogΓz
19 simprr φrAUAU
20 6 18 19 rspcdva φrAUlogΓA
21 nnuz =1
22 1zzd φrAU1
23 1z 1
24 seqfn 1seq1f+mzUzlogm+1mlogzm+1Fn1
25 23 24 ax-mp seq1f+mzUzlogm+1mlogzm+1Fn1
26 21 fneq2i seq1f+mzUzlogm+1mlogzm+1Fnseq1f+mzUzlogm+1mlogzm+1Fn1
27 25 26 mpbir seq1f+mzUzlogm+1mlogzm+1Fn
28 17 simprd φrAUseq1f+mzUzlogm+1mlogzm+1uUzUlogΓz+logz
29 ulmf2 seq1f+mzUzlogm+1mlogzm+1Fnseq1f+mzUzlogm+1mlogzm+1uUzUlogΓz+logzseq1f+mzUzlogm+1mlogzm+1:U
30 27 28 29 sylancr φrAUseq1f+mzUzlogm+1mlogzm+1:U
31 seqex seq1+GV
32 31 a1i φrAUseq1+GV
33 cnex V
34 1 33 rabex2 UV
35 34 a1i φrAUnUV
36 simpr φrAUnn
37 36 21 eleqtrdi φrAUnn1
38 fz1ssnn 1n
39 38 a1i φrAUn1n
40 ovexd φrAUnmzUzlogm+1mlogzm+1V
41 35 37 39 40 seqof2 φrAUnseq1f+mzUzlogm+1mlogzm+1n=zUseq1+mzlogm+1mlogzm+1n
42 simplr φrAUnz=Amz=A
43 42 oveq1d φrAUnz=Amzlogm+1m=Alogm+1m
44 42 oveq1d φrAUnz=Amzm=Am
45 44 fvoveq1d φrAUnz=Amlogzm+1=logAm+1
46 43 45 oveq12d φrAUnz=Amzlogm+1mlogzm+1=Alogm+1mlogAm+1
47 46 mpteq2dva φrAUnz=Amzlogm+1mlogzm+1=mAlogm+1mlogAm+1
48 47 3 eqtr4di φrAUnz=Amzlogm+1mlogzm+1=G
49 48 seqeq3d φrAUnz=Aseq1+mzlogm+1mlogzm+1=seq1+G
50 49 fveq1d φrAUnz=Aseq1+mzlogm+1mlogzm+1n=seq1+Gn
51 simplrr φrAUnAU
52 fvexd φrAUnseq1+GnV
53 41 50 51 52 fvmptd φrAUnseq1f+mzUzlogm+1mlogzm+1nA=seq1+Gn
54 21 22 30 19 32 53 28 ulmclm φrAUseq1+GzUlogΓz+logzA
55 fveq2 z=Alogz=logA
56 5 55 oveq12d z=AlogΓz+logz=logΓA+logA
57 eqid zUlogΓz+logz=zUlogΓz+logz
58 ovex logΓA+logAV
59 56 57 58 fvmpt AUzUlogΓz+logzA=logΓA+logA
60 19 59 syl φrAUzUlogΓz+logzA=logΓA+logA
61 54 60 breqtrd φrAUseq1+GlogΓA+logA
62 20 61 jca φrAUlogΓAseq1+GlogΓA+logA
63 4 62 rexlimddv φlogΓAseq1+GlogΓA+logA